Abstract
We consider the distributed estimation of a random vector signal in a power constraint wireless sensor network (WSN) that follows a multiple-input and multiple-output (MIMO) coherent multiple access channel model. We design linear coding matrices based on linear minimum mean-square error (LMMSE) fusion rule that accommodates spatial correlated data. We obtain a closed-form solution that follows a water-filling strategy. We also derive a lower bound to this model. Simulation results show that when the data is more correlated, the distortion in terms of mean-square error (MSE) degrades. By taking into account the effects of correlation, observation, and channel matrices, the proposed method performs better than equal power method.
Original language | English |
---|---|
Journal | International Scholarly Research Notices |
DOIs | |
Publication status | Published - 31 Jul 2013 |