TY - JOUR
T1 - VSIG4/CRIg directly regulates early CD8+ T cell activation through its counter-receptor in a narrow window
AU - Widyagarini, Amrita
AU - Nishii, Naoto
AU - Kawano, Yohei
AU - Zhang, Chenyang
AU - Azuma, Miyuki
N1 - Funding Information:
This work was supported by a grant from the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI) ( A18H04066 to M.A.).
Publisher Copyright:
© 2022 Elsevier Inc.
PY - 2022/7/23
Y1 - 2022/7/23
N2 - T-cell responses are fine-tuned by positive and negative co-signal molecules expressed on immune cells and adjacent tissues. VSIG4 is a newly identified member of the B7 family of ligands, which negatively regulates innate inflammatory and CD4+ T cell-mediated responses. However, little is known about the direct effects of VSIG4, which are exerted through an unidentified counter-receptor on CD8+ T cells. We investigated the binding of the VSIG4-Ig fusion protein during CD8+ T cell activation, and the functional involvement of VSIG4 pathway, using VSIG4-Ig and VSIG4-transfectants. VSIG4-Ig binding to CD8+ T cells was temporally observed in the CD44high phenotype during initial activation. VSIG4-Ig binding was observed earlier than the induction of PD-1, LAG3, and TIM-3, which are immune checkpoint receptors for exhausted CD8+ T cells. Immobilized VSIG4-Ig inhibited anti-CD3/CD28 mAb-induced CD8+ T cell activation, as indicated by proliferation and IFN-γ production, similar to the downregulation of T-bet and Eomesodermin transcription factors. VSIG4 on FcγR+ P815 or specific antigen-presenting E.G7 cells inhibited the generation of effector CD8+ T cells, as indicated by proliferation, IFN-γ and TNF-α expression, and granule degradation, compared to parental cells. However, the window for the regulatory function of VSIG4 was narrow and dependent on the strength of TCR (and CD28)-mediated signals. Our results suggested that VSIG4 directly delivers co-inhibitory signals via an as-yet unidentified counter-receptor on activated CD8+ T cells. VSIG4-mediated CD8+ T cell tolerance might contribute to the steady-state maintenance of homeostasis.
AB - T-cell responses are fine-tuned by positive and negative co-signal molecules expressed on immune cells and adjacent tissues. VSIG4 is a newly identified member of the B7 family of ligands, which negatively regulates innate inflammatory and CD4+ T cell-mediated responses. However, little is known about the direct effects of VSIG4, which are exerted through an unidentified counter-receptor on CD8+ T cells. We investigated the binding of the VSIG4-Ig fusion protein during CD8+ T cell activation, and the functional involvement of VSIG4 pathway, using VSIG4-Ig and VSIG4-transfectants. VSIG4-Ig binding to CD8+ T cells was temporally observed in the CD44high phenotype during initial activation. VSIG4-Ig binding was observed earlier than the induction of PD-1, LAG3, and TIM-3, which are immune checkpoint receptors for exhausted CD8+ T cells. Immobilized VSIG4-Ig inhibited anti-CD3/CD28 mAb-induced CD8+ T cell activation, as indicated by proliferation and IFN-γ production, similar to the downregulation of T-bet and Eomesodermin transcription factors. VSIG4 on FcγR+ P815 or specific antigen-presenting E.G7 cells inhibited the generation of effector CD8+ T cells, as indicated by proliferation, IFN-γ and TNF-α expression, and granule degradation, compared to parental cells. However, the window for the regulatory function of VSIG4 was narrow and dependent on the strength of TCR (and CD28)-mediated signals. Our results suggested that VSIG4 directly delivers co-inhibitory signals via an as-yet unidentified counter-receptor on activated CD8+ T cells. VSIG4-mediated CD8+ T cell tolerance might contribute to the steady-state maintenance of homeostasis.
KW - CD8 T cells
KW - Immune checkpoint molecule
KW - Regulation
KW - VSIG4/CRIg
UR - http://www.scopus.com/inward/record.url?scp=85129995881&partnerID=8YFLogxK
U2 - 10.1016/j.bbrc.2022.04.120
DO - 10.1016/j.bbrc.2022.04.120
M3 - Article
AN - SCOPUS:85129995881
SN - 0006-291X
VL - 614
SP - 100
EP - 106
JO - Biochemical and Biophysical Research Communications
JF - Biochemical and Biophysical Research Communications
ER -