UAV application to estimate oil palm trees health using Visible Atmospherically Resistant Index (VARI) (Case study of Cikabayan Research Farm, Bogor City)

Medina Nur Anisa, Rokhmatuloh, Revi Hernina

Research output: Contribution to journalConference articlepeer-review

7 Citations (Scopus)

Abstract

This article describes the making of an oil palm tree health map using aerial photos extracted from UAV DJI Phantom 4. A DJI Phantom 4 was flown at 100 meters height at the Cikabayan Research Farm, Bogor City. Raw aerial photos from DJI Phantom 4 were processed using Agisoft Photoscan software to generate dense point clouds. These points were computed to produce a digital surface model (DSM) and orthophotos with a spatial resolution of 2.73 cm/pixel. Red, green, and blue bands of the photos were computed to provide the Visible Atmospherically Resistant Index (VARI). Also, orthophotos containing oil palm trees were digitized to create points in vector form. VARI pixel values were added to each point and classified into four classes: Needs Inspection, Declining Health, Moderately health, and Healthy. Resulted oil palm tree health map reveals that most of the oil palm trees in the study location are classified as Declining Health and Needs Inspection. Profitably, plantation workers can directly inspect oil palm trees whose health are declining, based on information derived from oil palm tree health map. The information that comes from this study will significantly save time and effort in monitoring oil palm trees' healthiness.

Original languageEnglish
Article number05001
JournalE3S Web of Conferences
Volume211
DOIs
Publication statusPublished - 25 Nov 2020
Event1st International Symposium of Earth, Energy, Environmental Science and Sustainable Development, JESSD 2020 - Virtual, Online, Indonesia
Duration: 28 Sept 202030 Sept 2020

Fingerprint

Dive into the research topics of 'UAV application to estimate oil palm trees health using Visible Atmospherically Resistant Index (VARI) (Case study of Cikabayan Research Farm, Bogor City)'. Together they form a unique fingerprint.

Cite this