Abstract
The synthesis, characterization, and photocatalytic activity of ZnO/Bi2Sn2O7 nanocomposite are reported herein. ZnO/Bi2Sn2O7 was synthesized using a green high-speed stirring (HSS)-assisted method in the n-hexane–water system using Cassia alata leaf extract (CLE). ZnO/Bi2Sn2O7 nanocomposite formed at the interface between n-hexane and water owing to the essential role of CLE secondary metabolites. Various analytical techniques were applied to characterize the optical, structural, and morphological properties as well as particle size of the nanocomposite. The ZnO/Bi2Sn2O7 nanocomposite with average particle size of 9.8 nm exhibited efficiency of 86.59% for degradation of rhodamine B within 120 min. This high visible-light-driven photocatalytic activity was obtained by modification of ZnO with Bi2Sn2O7, resulting in a decrease of the bandgap energy from 3.12 eV to 2.80 eV. This research offers a novel method for efficient synthesis of nanocomposites with high photocatalytic activity.
Original language | English |
---|---|
Pages (from-to) | 441-449 |
Number of pages | 9 |
Journal | JOM |
Volume | 73 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2021 |