Abstract
The rapid evolution of global transportation technology is exemplified by Indonesia's innovative high-speed train initiative, linking Jakarta and Bandung in an impressive 45 minutes. Operating at 350 km/h, the HST CR400AF underscores the importance of aerodynamics in high-speed rail systems. This study delves into the significant impact of crosswind on key aerodynamic factors (drag, lift, rolling moment) within the tunnel-bridge-tunnel configuration. Leveraging Computational Fluid Dynamics (CFD) through ANSYS FLUENT, the analysis explores crosswind variations at 0 m/s, 10 m/s, and 25 m/s. Results reveal a proportional increase in aerodynamic load with higher crosswind intensities: 1.67 times for drag, 58.8 times for lift, and 29.8 times for rolling moment. Notable observations include pronounced aerodynamic load fluctuations during the "OUT" process, with the head section bearing the greatest load, followed by the tail and middle sections. These findings contribute valuable insights to the global discourse on enhancing safety and efficiency in high-speed rail systems.
Original language | English |
---|---|
Pages (from-to) | 64-80 |
Number of pages | 17 |
Journal | CFD Letters |
Volume | 16 |
Issue number | 10 |
DOIs | |
Publication status | Published - Oct 2024 |
Keywords
- aerodynamics coefficient
- CFD simulation
- crosswind
- high speed train
- tunnel – bridge