Theoretical study on the magnetic moments formation in Ta-doped anatase TiO2

A. X. Bupu, Muhammad Aziz Majidi, A. Rusydi

Research output: Contribution to journalConference articlepeer-review

9 Citations (Scopus)

Abstract

We present a theoretical study on Ti-vacancy induced ferromagnetism in Ta-doped anatase TiO2. Experimental study of Ti1-xTa x O2 thin film has shown that Ti-vacancies (assisted by Ta doping) induce the formation of localized magnetic moment around it, then, the observed ferromagnetism is caused by the alignment of localized magnetic moments through Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. In this study, we focus on the formation of the localized magnetic moments in this system. We hypothesize that on a unit cell, Ti-vacancy has caused four electrons from the surrounding oxygen atoms to become unpaired. These unpaired electrons then arrange themselves into a configuration with a non-zero net magnetic moment. To examine our hypothesis, we construct a Hamiltonian of the four unpaired electrons, incorporating the Coulomb intra- and inter-orbital interactions, in matrix form. Using a set of chosen parameter values, we diagonalize the Hamiltonian to get the eigenstates and eigenvalues, then, with the resulting eigenstates, we calculate the magnetic moment, μ, by obtaining the expectation value of the square of total spin operator. Our calculation results show that in the ground state, provided that the ratio of parameters satisfies some criterion, μ ≈ 4μ B, corresponding to the four electron spins being almost perfectly aligned, can be achieved. Further, as long as we keep the Coulomb intra-orbital interaction between 0.5 and 1 eV, we find that μ ≈ 4μ B is robust up to far above room temperature. Our results demonstrate that Ti vacancies in anatase TiO2 can form very stable localized magnetic moments.

Original languageEnglish
Article number012009
JournalIOP Conference Series: Materials Science and Engineering
Volume188
Issue number1
DOIs
Publication statusPublished - 2 May 2017
EventInternational Symposium on Current Progress in Functional Materials 2016, ISCPFM 2016 - Bali, Indonesia
Duration: 26 Jul 201627 Jul 2016

Fingerprint

Dive into the research topics of 'Theoretical study on the magnetic moments formation in Ta-doped anatase TiO2'. Together they form a unique fingerprint.

Cite this