Theoretical formulation of optical conductivity of La0.7Ca0.3MnO3 exhibiting paramagnetic insulator - Ferromagnetic metal transition

L. Satiawati, M. A. Majidi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A theory of high-energy optical conductivity of La0.7Ca0.3MnO3 has been proposed previously. The proposed theory works to explain the temperature-dependence of the optical conductivity for the photon energy region above ∼0.5 eV for up to ∼22 eV, but fails to capture the correct physics close to the dc limit in which metal-insulator transition occurs. The missing physics at the low energy has been acknowledged as mainly due to not incorporating phonon degree of freedom and electron-phonon interactions. In this study, we aim to complete the above theory by proposing a more complete Hamiltonian incorporating additional terms such as crystal field, two modes of Jahn-Teller vibrations, and coupling between electrons and the two Jahn-Teller vibrational modes. We solve the model by means of dynamical mean-field theory. At this stage, we aim to derive the analytical formulae involved in the calculation, and formulate the algorithmic implementation for the self-consistent calculation process. Our final goal is to compute the density of states and the optical conductivity for the complete photon energy range from 0 to 22 eV at various temperatures, and compare them with the experimental data. We expect that the improved model preserves the correct temperature-dependent physics at high photon energies, as already captured by the previous model, while it would also reveal ferromagnetic metal - paramagnetic insulator transition at the dc limit.

Original languageEnglish
Title of host publicationInternational Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016
Subtitle of host publicationProceedings of the 2nd International Symposium on Current Progress in Mathematics and Sciences 2016
EditorsKiki Ariyanti Sugeng, Djoko Triyono, Terry Mart
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735415362
DOIs
Publication statusPublished - 10 Jul 2017
Event2nd International Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016 - Depok, Jawa Barat, Indonesia
Duration: 1 Nov 20162 Nov 2016

Publication series

NameAIP Conference Proceedings
Volume1862
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference2nd International Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016
Country/TerritoryIndonesia
CityDepok, Jawa Barat
Period1/11/162/11/16

Fingerprint

Dive into the research topics of 'Theoretical formulation of optical conductivity of La0.7Ca0.3MnO3 exhibiting paramagnetic insulator - Ferromagnetic metal transition'. Together they form a unique fingerprint.

Cite this