The Use of 3D Polylactic Acid Scaffolds with Hydroxyapatite/Alginate Composite Injection and Mesenchymal Stem Cells as Laminoplasty Spacers in Rabbits

Ahmad Jabir Rahyussalim, Dina Aprilya, Raden Handidwiono, Yudan Whulanza, Ghiska Ramahdita, Tri Kurniawati

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Several types of laminoplasty spacer have been used to fill bone gaps and maintain a widened canal. A 3D scaffold can be used as an alternative spacer to minimize the risk observed in allografts or autografts. This study aims to evaluate the in vivo biocompatibility and tissue–scaffold integration of a polylactic acid (PLA) scaffold with the addition of alginate/hydroxyapatite (HA) and mesenchymal stem cell (MSc) injections. This is an experimental study with a pretest and post-test control group design. A total of 15 laminoplasty rabbit models were divided into five groups with variations in the autograft, PLA, HA/alginate, and MSc scaffold. In general, there were no signs of inflammation in most samples (47%), and there were no samples with areas of necrosis. There were no significant differences in the histopathological results and microstructural assessment between the five groups. This demonstrates that the synthetic scaffolds that we used had a similar tissue reaction and tissue integration profile as the autograft (p > 0.05). We recommend further translational studies in humans so that this biocompatible fabricated scaffold can be used to fill bone defects.

Original languageEnglish
Article number3292
JournalPolymers
Volume14
Issue number16
DOIs
Publication statusPublished - Aug 2022

Keywords

  • alginate
  • hydroxyapatite
  • laminoplasty
  • mesenchymal stem cells
  • polylactic acid
  • scaffold
  • spacer

Fingerprint

Dive into the research topics of 'The Use of 3D Polylactic Acid Scaffolds with Hydroxyapatite/Alginate Composite Injection and Mesenchymal Stem Cells as Laminoplasty Spacers in Rabbits'. Together they form a unique fingerprint.

Cite this