TY - GEN
T1 - The study of zinc oxide addition into hydroxyapatite/chitosan scaffold for bone tissue engineering application
AU - Yuwono, Akhmad Herman
AU - Ramahdita, Ghiska
AU - Mu'Lanuddin, Muhammad Aldi
AU - Adyandra, Alyssa
AU - Gustiraharjo, Gifrandy
N1 - Publisher Copyright:
© 2019 Author(s).
PY - 2019/12/10
Y1 - 2019/12/10
N2 - Hydroxyapatite (HAp) and chitosan (CS) are known to be suitable to be used as the main matrices in scaffold fabrication due to its biodegradability and biocompatibility. However, biocompatibility contributes to the growth and development of bacteria. Therefore, the properties of these scaffolds can be improved by adding additional substance to the scaffold. In this study, antibacterial property was improved by adding zinc oxide into HAp/CS scaffold with concentration of 1%, 2%, and 3% by weight. These scaffolds were fabricated through freeze drying techniques in -80°C. Chemical analysis, microstructure, and phase composition of these scaffolds were gone trough Fourier Transform Infra Red (FTIR), Scanning Electron Microscope (SEM), and Energy Dispersive X-Ray Analisis (EDX) assays. Antibacterial examination was also carried out to study zinc oxide ability to inhibit bacteria growth in HAp/CS. These scaffolds showed antibacterial efficacy against Escherichia coli. In this analysis, zinc oxide concentration has a linear correlation to antibacterial activity, where each 1%, 2%, and 3% ZnO have inhibition zone diameter of 0.25, 0.5, and 0.75 mm, respectively. This study showed a simple approach for developing bone scaffold with the addition of zinc oxide to enhance its antibacterial activity.
AB - Hydroxyapatite (HAp) and chitosan (CS) are known to be suitable to be used as the main matrices in scaffold fabrication due to its biodegradability and biocompatibility. However, biocompatibility contributes to the growth and development of bacteria. Therefore, the properties of these scaffolds can be improved by adding additional substance to the scaffold. In this study, antibacterial property was improved by adding zinc oxide into HAp/CS scaffold with concentration of 1%, 2%, and 3% by weight. These scaffolds were fabricated through freeze drying techniques in -80°C. Chemical analysis, microstructure, and phase composition of these scaffolds were gone trough Fourier Transform Infra Red (FTIR), Scanning Electron Microscope (SEM), and Energy Dispersive X-Ray Analisis (EDX) assays. Antibacterial examination was also carried out to study zinc oxide ability to inhibit bacteria growth in HAp/CS. These scaffolds showed antibacterial efficacy against Escherichia coli. In this analysis, zinc oxide concentration has a linear correlation to antibacterial activity, where each 1%, 2%, and 3% ZnO have inhibition zone diameter of 0.25, 0.5, and 0.75 mm, respectively. This study showed a simple approach for developing bone scaffold with the addition of zinc oxide to enhance its antibacterial activity.
KW - Antibacterial Activity
KW - Bone Scaffold
KW - Chitosan
KW - Freeze Drying
KW - Hydroxyapatite
KW - Zinc Oxide
UR - http://www.scopus.com/inward/record.url?scp=85076734419&partnerID=8YFLogxK
U2 - 10.1063/1.5139336
DO - 10.1063/1.5139336
M3 - Conference contribution
AN - SCOPUS:85076734419
T3 - AIP Conference Proceedings
BT - 4th Biomedical Engineering''s Recent Progress in Biomaterials, Drugs Development, Health, and Medical Devices
A2 - Lischer, Kenny
A2 - Abuzairi, Tomy
A2 - Rahman, Siti Fauziyah
A2 - Gozan, Misri
PB - American Institute of Physics Inc.
T2 - 4th International Symposium of Biomedical Engineering�s Recent Progress in Biomaterials, Drugs Development, Health, and Medical Devices, ISBE 2019
Y2 - 22 July 2019 through 24 July 2019
ER -