TY - JOUR
T1 - The safety of one-per-mil tumescent infiltration into tissue that has survived ischemia
AU - Prasetyono, Theddeus Octavianus Hari
AU - Nindita, Eliza
N1 - Publisher Copyright:
© 2019 The Korean Society of Plastic and Reconstructive Surgeons.
PY - 2019/3/1
Y1 - 2019/3/1
N2 -
Background The aim of this study was to assess the safety of one-per-mil tumescent injections into viable skin flaps that had survived an ischemic insult, in order to assess the potential suitability of one-per-mil tumescent injections in future secondary reconstructive procedures such as flap revision and refinements after replantation. Methods Forty groin flaps harvested from 20 healthy Wistar rats weighing 220 to 270 g were subjected to acute ischemia by clamping the pedicle for 15 minutes. All flaps showing total survival on the 7th postoperative day were randomly divided into group A (one-per-mil tumescent infiltration; n=14), group B (normal saline infiltration; n=13), and group C (control, with no infiltration; n=13) before being re-elevated. Transcutaneous oxygen tension (TcPO
2
) was measured before and after infiltration, and changes in TcPO
2
were statistically analyzed using analysis of variance, the paired t-test, and the independent t-test. The viability of flaps was also assessed using the Analyzing Digital Images software at 7 days after the second elevation. Results Thirty-nine flaps survived to the final assessment, with the sole exception of a flap from group A that did not survive the first elevation. TcPO
2
readings showed significant decreases (P<0.05) following both one-per-mil tumescent (99.9±5.7 mmHg vs. 37.2±6.3 mmHg) and normal saline (103±8.5 mmHg vs. 48.7±5.9 mmHg) infiltration. Moreover, all groin flaps survived with no signs of tissue necrosis. Conclusions One-per-mil tumescent infiltration into groin flap tissue that had survived ischemia did not result in tissue necrosis, although the flaps experienced a significant decrease of cutaneous oxygenation.
AB -
Background The aim of this study was to assess the safety of one-per-mil tumescent injections into viable skin flaps that had survived an ischemic insult, in order to assess the potential suitability of one-per-mil tumescent injections in future secondary reconstructive procedures such as flap revision and refinements after replantation. Methods Forty groin flaps harvested from 20 healthy Wistar rats weighing 220 to 270 g were subjected to acute ischemia by clamping the pedicle for 15 minutes. All flaps showing total survival on the 7th postoperative day were randomly divided into group A (one-per-mil tumescent infiltration; n=14), group B (normal saline infiltration; n=13), and group C (control, with no infiltration; n=13) before being re-elevated. Transcutaneous oxygen tension (TcPO
2
) was measured before and after infiltration, and changes in TcPO
2
were statistically analyzed using analysis of variance, the paired t-test, and the independent t-test. The viability of flaps was also assessed using the Analyzing Digital Images software at 7 days after the second elevation. Results Thirty-nine flaps survived to the final assessment, with the sole exception of a flap from group A that did not survive the first elevation. TcPO
2
readings showed significant decreases (P<0.05) following both one-per-mil tumescent (99.9±5.7 mmHg vs. 37.2±6.3 mmHg) and normal saline (103±8.5 mmHg vs. 48.7±5.9 mmHg) infiltration. Moreover, all groin flaps survived with no signs of tissue necrosis. Conclusions One-per-mil tumescent infiltration into groin flap tissue that had survived ischemia did not result in tissue necrosis, although the flaps experienced a significant decrease of cutaneous oxygenation.
KW - Epinephrine
KW - Hand injuries
KW - Ischemia
KW - Reperfusion injury
KW - Vasoconstriction
UR - http://www.scopus.com/inward/record.url?scp=85064254214&partnerID=8YFLogxK
U2 - 10.5999/aps.2018.00248
DO - 10.5999/aps.2018.00248
M3 - Article
AN - SCOPUS:85064254214
SN - 2234-6163
VL - 46
SP - 108
EP - 113
JO - Archives of Plastic Surgery
JF - Archives of Plastic Surgery
IS - 2
ER -