TY - JOUR
T1 - The Role of Nano-SiC on Characteristics of Mg-Al-Sr/Nano-SiC Composites Produced by Stir Casting Route
AU - Sartika, Vioni Dwi
AU - Syahrial, Anne Zulfia
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2019/11/4
Y1 - 2019/11/4
N2 - Magnesium composite with Mg-Al-Sr matrix reinforced by nano-SiC has successfully fabricated by stir casting process. Addition of nano-SiC into magnesium matrix varies by 0.05; 0.10; 0.15; 0.20; and 0.25 in percent of volume fraction (Vf-%). The optimum mechanical properties are found in composition of 0.15 Vf-% nano-SiC. The number of hardness, impact toughness, and wear rate of this composition are 68.4 BHN, 0.065 Joule/mm2, 1.03310-5mm3/mm respectively. Addition of 0.15 Vf-% nano-SiC enhances the hardness by 26%, impact toughness by 23.57%, and wear resistance by 38.40% respectively. Furthermore, the existence of nano-SiC in Mg-Al-Sr matrix modify the microstructure of composite by dispersing the intermetallic compounds. However, it is observed that higher nano-SiC content tends to agglomerate thus the strengthen mechanism cannot effectively occur. Microstructure analysis using OM and SEM reveals that the addition of nano-SiC transforms the dendritic matrix to globular equiaxed. EDX result predicts the phases formed are α-Mg, Al4Sr, Mg17Al12, MgAlSr, and XRD analysis finds the existence of SiC, SiO2.
AB - Magnesium composite with Mg-Al-Sr matrix reinforced by nano-SiC has successfully fabricated by stir casting process. Addition of nano-SiC into magnesium matrix varies by 0.05; 0.10; 0.15; 0.20; and 0.25 in percent of volume fraction (Vf-%). The optimum mechanical properties are found in composition of 0.15 Vf-% nano-SiC. The number of hardness, impact toughness, and wear rate of this composition are 68.4 BHN, 0.065 Joule/mm2, 1.03310-5mm3/mm respectively. Addition of 0.15 Vf-% nano-SiC enhances the hardness by 26%, impact toughness by 23.57%, and wear resistance by 38.40% respectively. Furthermore, the existence of nano-SiC in Mg-Al-Sr matrix modify the microstructure of composite by dispersing the intermetallic compounds. However, it is observed that higher nano-SiC content tends to agglomerate thus the strengthen mechanism cannot effectively occur. Microstructure analysis using OM and SEM reveals that the addition of nano-SiC transforms the dendritic matrix to globular equiaxed. EDX result predicts the phases formed are α-Mg, Al4Sr, Mg17Al12, MgAlSr, and XRD analysis finds the existence of SiC, SiO2.
KW - magnesium composite
KW - Mg-Al-Sr
KW - nano-SiC
KW - stir casting
UR - http://www.scopus.com/inward/record.url?scp=85076168724&partnerID=8YFLogxK
U2 - 10.1088/1757-899X/622/1/012014
DO - 10.1088/1757-899X/622/1/012014
M3 - Conference article
AN - SCOPUS:85076168724
SN - 1757-8981
VL - 622
JO - IOP Conference Series: Materials Science and Engineering
JF - IOP Conference Series: Materials Science and Engineering
IS - 1
M1 - 012014
T2 - 3rd Materials Research Society of Indonesia Meeting, MRS-Id 2018
Y2 - 31 July 2018 through 2 August 2018
ER -