TY - JOUR
T1 - The parameter estimation of logistic regression with maximum likelihood method and score function modification
AU - Febrianti, R.
AU - Widyaningsih, Y.
AU - Soemartojo, S.
N1 - Publisher Copyright:
© 2021 Journal of Physics: Conference Series.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/1/12
Y1 - 2021/1/12
N2 - The maximum likelihood parameter estimation method with Newton Raphson iteration is used in general to estimate the parameters of the logistic regression model. Parameter estimation using the maximum likelihood method cannot be used if the sample size and proportion of successful events are small, since the iteration process will not yield a convergent result. Therefore, the maximum likelihood method cannot be used to estimate the parameters. One way to resolve this un-convergence problem is using the score function modification. This modification is used to obtain the parameters estimate of logistic regression model. An example of parameter estimation, using maximum likelihood method with small sample size and proportion of successful events equals 0.1, showed that the iteration process is not convergent. This non-convergence can be solved with modifications on a score function. Modification on score function is to change a score function, a matrix of the first derivative of the log likelihood function, to the first derivative matrix itself minus multiplication of information matrix and biased vector. The modification of the score function can quickly yield values of parameter estimates, especially when the sample sizes are larger, and convergence was reached before the 10th iteration.
AB - The maximum likelihood parameter estimation method with Newton Raphson iteration is used in general to estimate the parameters of the logistic regression model. Parameter estimation using the maximum likelihood method cannot be used if the sample size and proportion of successful events are small, since the iteration process will not yield a convergent result. Therefore, the maximum likelihood method cannot be used to estimate the parameters. One way to resolve this un-convergence problem is using the score function modification. This modification is used to obtain the parameters estimate of logistic regression model. An example of parameter estimation, using maximum likelihood method with small sample size and proportion of successful events equals 0.1, showed that the iteration process is not convergent. This non-convergence can be solved with modifications on a score function. Modification on score function is to change a score function, a matrix of the first derivative of the log likelihood function, to the first derivative matrix itself minus multiplication of information matrix and biased vector. The modification of the score function can quickly yield values of parameter estimates, especially when the sample sizes are larger, and convergence was reached before the 10th iteration.
KW - Maximum likelihood
KW - Score function modification
UR - http://www.scopus.com/inward/record.url?scp=85100708954&partnerID=8YFLogxK
U2 - 10.1088/1742-6596/1725/1/012014
DO - 10.1088/1742-6596/1725/1/012014
M3 - Conference article
AN - SCOPUS:85100708954
SN - 1742-6588
VL - 1725
JO - Journal of Physics: Conference Series
JF - Journal of Physics: Conference Series
IS - 1
M1 - 012014
T2 - 2nd Basic and Applied Sciences Interdisciplinary Conference 2018, BASIC 2018
Y2 - 3 August 2018 through 4 August 2018
ER -