TY - JOUR
T1 - The optical and high-pressure raman scattering study of La(Fe,Mo)0.5O3ceramics
AU - Triyono, D.
AU - Laysandra, H.
AU - Rafsanjani, R. A.
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020
Y1 - 2020
N2 - This study was focused on the optical-vibrational analysis and high-pressure Raman-scattering spectroscopy of La(Fe,Mo)0.5O3 ceramics at room temperature. This material was fabricated by using the sol-gel method. The element composition was checked by X-ray Fluorescence confirming the atomic ratio of La, Fe and Mo. Fourier Transform Infrared spectroscopy confirmed the (Fe/Mo -O) bonding vibration which is typical perovskite structure. The band gap energy investigated by UV-Vis spectra was found to be 2.03 eV. At room temperature, the Raman scattering spectra under high pressure was characterized by the Raman-scattering spectrum in the range of 0.90 to 16.7 GPa. The high-pressure Raman scattering confirmed the structural transition after the pressure surpasses 7.0 GPa. From this phenomena, it well indicates the lattice structure stability is still preserved under 7.0 GPa.
AB - This study was focused on the optical-vibrational analysis and high-pressure Raman-scattering spectroscopy of La(Fe,Mo)0.5O3 ceramics at room temperature. This material was fabricated by using the sol-gel method. The element composition was checked by X-ray Fluorescence confirming the atomic ratio of La, Fe and Mo. Fourier Transform Infrared spectroscopy confirmed the (Fe/Mo -O) bonding vibration which is typical perovskite structure. The band gap energy investigated by UV-Vis spectra was found to be 2.03 eV. At room temperature, the Raman scattering spectra under high pressure was characterized by the Raman-scattering spectrum in the range of 0.90 to 16.7 GPa. The high-pressure Raman scattering confirmed the structural transition after the pressure surpasses 7.0 GPa. From this phenomena, it well indicates the lattice structure stability is still preserved under 7.0 GPa.
UR - http://www.scopus.com/inward/record.url?scp=85096496177&partnerID=8YFLogxK
U2 - 10.1088/1757-899X/902/1/012021
DO - 10.1088/1757-899X/902/1/012021
M3 - Conference article
AN - SCOPUS:85096496177
SN - 1757-8981
VL - 902
JO - IOP Conference Series: Materials Science and Engineering
JF - IOP Conference Series: Materials Science and Engineering
IS - 1
M1 - 012021
T2 - 4th International Symposium on Current Progress in Functional Materials, ISCPFM 2019
Y2 - 6 November 2019 through 7 November 2019
ER -