TY - GEN
T1 - The modification of ion exchange heterogeneous catalysts for biodiesel synthesis
AU - Hartono, R.
AU - Mulia, B.
AU - Sahlan, Muhamad
AU - Utami, Tania Surya
AU - Wijanarko, Anondho
AU - Hermansyah, Heri
N1 - Publisher Copyright:
© 2017 Author(s).
PY - 2017/3/28
Y1 - 2017/3/28
N2 - Conventionally, biodiesel is produced by using the homogeneous catalyst which has difficulty in high cost of the separation process. The heterogeneous catalysts ion exchange resin by its Solid phase can make an easier separation process, able to be reactivated and used repeatedly. In this research, the heterogeneous catalyst from various source such as Lewatit macro porous resin, Amberlite gel resin and natural zeolite bayah was investigated their performance to produced biodiesel from used cooking oil. Initially, the preparation of the ion exchange process with variations in time, temperature, the concentration of HCl and NaOH solution was investigated. Then, the activity of heterogeneous catalyst to produced biodiesel under the variation of stirring rate, zeolite particle size, and comparison of different ion exchange catalysts were also investigated. Finally, the stability test and regeneration treatment were also investigated. The optimum operating conditions of biodiesel synthesis process is at the temperature of 60 °C for 2?h with a stirring speed of 700?rpm. Natural zeolite Bayah with 6 M of NaOH solution produced 16.19%, Amberlite gel with 6 M HCL produced 65.22% of biodiesel yield and material Lewatit macro porous with 6 M of NaOH solution produced 85.94% as the maximum result. As the best result, Material Lewatit macro porous selected as the material which was used in the variation of stirring speed, temperature, and reaction time, the concentration of base and stability test. According to the results of analysis, calculations yield methyl oleic HPLC produced by Lewatit macro porous with 6 M NaOH at 62.95%.
AB - Conventionally, biodiesel is produced by using the homogeneous catalyst which has difficulty in high cost of the separation process. The heterogeneous catalysts ion exchange resin by its Solid phase can make an easier separation process, able to be reactivated and used repeatedly. In this research, the heterogeneous catalyst from various source such as Lewatit macro porous resin, Amberlite gel resin and natural zeolite bayah was investigated their performance to produced biodiesel from used cooking oil. Initially, the preparation of the ion exchange process with variations in time, temperature, the concentration of HCl and NaOH solution was investigated. Then, the activity of heterogeneous catalyst to produced biodiesel under the variation of stirring rate, zeolite particle size, and comparison of different ion exchange catalysts were also investigated. Finally, the stability test and regeneration treatment were also investigated. The optimum operating conditions of biodiesel synthesis process is at the temperature of 60 °C for 2?h with a stirring speed of 700?rpm. Natural zeolite Bayah with 6 M of NaOH solution produced 16.19%, Amberlite gel with 6 M HCL produced 65.22% of biodiesel yield and material Lewatit macro porous with 6 M of NaOH solution produced 85.94% as the maximum result. As the best result, Material Lewatit macro porous selected as the material which was used in the variation of stirring speed, temperature, and reaction time, the concentration of base and stability test. According to the results of analysis, calculations yield methyl oleic HPLC produced by Lewatit macro porous with 6 M NaOH at 62.95%.
UR - http://www.scopus.com/inward/record.url?scp=85017636627&partnerID=8YFLogxK
U2 - 10.1063/1.4979236
DO - 10.1063/1.4979236
M3 - Conference contribution
AN - SCOPUS:85017636627
T3 - AIP Conference Proceedings
BT - Renewable Energy Technology and Innovation for Sustainable Development
A2 - Sofyan, Nofrijon
PB - American Institute of Physics Inc.
T2 - 1st International Tropical Renewable Energy Conference: Renewable Energy Technology and Innovation for Sustainable Development, iTREC 2016
Y2 - 26 October 2016 through 28 October 2016
ER -