TY - JOUR
T1 - The influence of calcination temperature on the structural properties of La2FeMnO6double perovskite materials
AU - Yunida,
AU - Triyono, D.
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020
Y1 - 2020
N2 - The double perovskite compound, La2FeMnO6 (LFMO), has been synthesized using the sol-gel method. Structural properties were characterized by X-ray diffraction (XRD), and X-ray Fluorescence (XRF), Fourier Transform Infrared Spectroscopy (FTIR) and Raman scattering spectroscopy. Rietveld refinement of calcination powder from X-ray data indicates the compound was a single-phase formation of double perovskite with 750 C and 900 C calcination temperatures. XRF showed the weight and atomic ratio of the compound are suitable with double perovskite stoichiometric, respectively. The result of structural analysis confirmed that the La2FeMnO6 has a cubic structure with space group Pm-3m at both temperatures. Lattice parameters, volume and crystallite size of the samples become larger as higher calcination temperatures. Raman scattering spectroscopy and FTIR have been used to study the peak vibrational modes and various bond formations of the prepared samples.
AB - The double perovskite compound, La2FeMnO6 (LFMO), has been synthesized using the sol-gel method. Structural properties were characterized by X-ray diffraction (XRD), and X-ray Fluorescence (XRF), Fourier Transform Infrared Spectroscopy (FTIR) and Raman scattering spectroscopy. Rietveld refinement of calcination powder from X-ray data indicates the compound was a single-phase formation of double perovskite with 750 C and 900 C calcination temperatures. XRF showed the weight and atomic ratio of the compound are suitable with double perovskite stoichiometric, respectively. The result of structural analysis confirmed that the La2FeMnO6 has a cubic structure with space group Pm-3m at both temperatures. Lattice parameters, volume and crystallite size of the samples become larger as higher calcination temperatures. Raman scattering spectroscopy and FTIR have been used to study the peak vibrational modes and various bond formations of the prepared samples.
UR - http://www.scopus.com/inward/record.url?scp=85096501546&partnerID=8YFLogxK
U2 - 10.1088/1757-899X/902/1/012027
DO - 10.1088/1757-899X/902/1/012027
M3 - Conference article
AN - SCOPUS:85096501546
SN - 1757-8981
VL - 902
JO - IOP Conference Series: Materials Science and Engineering
JF - IOP Conference Series: Materials Science and Engineering
IS - 1
M1 - 012027
T2 - 4th International Symposium on Current Progress in Functional Materials, ISCPFM 2019
Y2 - 6 November 2019 through 7 November 2019
ER -