@inproceedings{f031860579674e08a61ddbac68a7dffd,
title = "The impact of calcium carbonate as pore forming agent and drug entrapment method towards drug dissolution mechanism of amoxicillin trihydrate encapsulated by chitosan-methyl cellulose semi -IPN hydrogel for floating drug delivery system",
abstract = "Chitosan-methyl cellulose semi-IPN hydrogel is used as floating drug delivery system, and calcium carbonate also added as pore forming agent. The hydrogel network arranged by not only using biopolymer chitosan and methyl cellulose, but also the crosslink agent that is glutaraldehyde. Amoxicillin trihydrate entrapped into the polymer network with two different method, in situ loading and post loading. Furthermore both method has been tested for drug entrapment efficiency along with drug dissolution test, and the result for drug entrapment efficiency is in situ loading method has highest value of 100%, compared to post loading method which has value only 71%. Moreover, at the final time of drug dissolution test shows in situ loading method has value of 96% for total accumulative of drug dissolution, meanwhile post loading method has 72%. The value of drug dissolution test from both method is used for analyzing drug dissolution mechanism of amoxicillin trihydrate from hydrogel network with four mathematical drug mechanism models as parameter. The polymer network encounter destructive degradation causes by acid solution which used as dissolution medium, and the level of degradation is observed with optical microscope. However the result shows that degradation of the polymer network doesn't affect drug dissolution mechanism directly. Although the pore forming agent causes the pore inside the hydrogel network create interconnection and it was quite influential to drug dissolution mechanism. Interconnected pore is observed with Scanning Electron Microscope (SEM) and shows that the amount and area of interconnected pore inside the hydrogel network is increasing as drug dissolution goes on.",
keywords = "Amoxicillin Trihydrate, Drug Dissolution Method, Hydrogel, Pore Forming Agent",
author = "Fauzi Dewantara and Emil Budianto",
note = "Publisher Copyright: {\textcopyright} 2018 Author(s).; 3rd International Conference on Materials and Metallurgical Engineering and Technology: Advancing Innovation in Materials Science, Technology and Applications for Sustainable Future, ICOMMET 2017 ; Conference date: 30-10-2017 Through 31-10-2017",
year = "2018",
month = apr,
day = "3",
doi = "10.1063/1.5030284",
language = "English",
series = "AIP Conference Proceedings",
publisher = "American Institute of Physics Inc.",
editor = "Hidayat, {Mas Irfan P.}",
booktitle = "Proceedings of the 3rd International Conference on Materials and Metallurgical Engineering and Technology, ICOMMET 2017",
address = "United States",
}