TY - GEN
T1 - The impact of calcium carbonate as pore forming agent and drug entrapment method towards drug dissolution mechanism of amoxicillin trihydrate encapsulated by chitosan-methyl cellulose semi -IPN hydrogel for floating drug delivery system
AU - Dewantara, Fauzi
AU - Budianto, Emil
N1 - Funding Information:
The Authors would like to thank Directorate of Research and Community Engagement (DRPM) Universitas Indonesia for supporting our research financially through Hibah Publikasi Internasional Terindeks untuk Tugas Akhir (Hibah PITTA) 2017. We also would like to thank Department of Chemistry, Universitas Indonesia for supporting us and providing the instrumental facilities for our research. Emil Budianto supervised this research and designed the research pipeline, while Anastasya conducted the experimental details, analyzed the data, and wrote the final manuscript. Herewith, we would declare that there is no conflict of interest regarding this manuscript.
Publisher Copyright:
© 2018 Author(s).
PY - 2018/4/3
Y1 - 2018/4/3
N2 - Chitosan-methyl cellulose semi-IPN hydrogel is used as floating drug delivery system, and calcium carbonate also added as pore forming agent. The hydrogel network arranged by not only using biopolymer chitosan and methyl cellulose, but also the crosslink agent that is glutaraldehyde. Amoxicillin trihydrate entrapped into the polymer network with two different method, in situ loading and post loading. Furthermore both method has been tested for drug entrapment efficiency along with drug dissolution test, and the result for drug entrapment efficiency is in situ loading method has highest value of 100%, compared to post loading method which has value only 71%. Moreover, at the final time of drug dissolution test shows in situ loading method has value of 96% for total accumulative of drug dissolution, meanwhile post loading method has 72%. The value of drug dissolution test from both method is used for analyzing drug dissolution mechanism of amoxicillin trihydrate from hydrogel network with four mathematical drug mechanism models as parameter. The polymer network encounter destructive degradation causes by acid solution which used as dissolution medium, and the level of degradation is observed with optical microscope. However the result shows that degradation of the polymer network doesn't affect drug dissolution mechanism directly. Although the pore forming agent causes the pore inside the hydrogel network create interconnection and it was quite influential to drug dissolution mechanism. Interconnected pore is observed with Scanning Electron Microscope (SEM) and shows that the amount and area of interconnected pore inside the hydrogel network is increasing as drug dissolution goes on.
AB - Chitosan-methyl cellulose semi-IPN hydrogel is used as floating drug delivery system, and calcium carbonate also added as pore forming agent. The hydrogel network arranged by not only using biopolymer chitosan and methyl cellulose, but also the crosslink agent that is glutaraldehyde. Amoxicillin trihydrate entrapped into the polymer network with two different method, in situ loading and post loading. Furthermore both method has been tested for drug entrapment efficiency along with drug dissolution test, and the result for drug entrapment efficiency is in situ loading method has highest value of 100%, compared to post loading method which has value only 71%. Moreover, at the final time of drug dissolution test shows in situ loading method has value of 96% for total accumulative of drug dissolution, meanwhile post loading method has 72%. The value of drug dissolution test from both method is used for analyzing drug dissolution mechanism of amoxicillin trihydrate from hydrogel network with four mathematical drug mechanism models as parameter. The polymer network encounter destructive degradation causes by acid solution which used as dissolution medium, and the level of degradation is observed with optical microscope. However the result shows that degradation of the polymer network doesn't affect drug dissolution mechanism directly. Although the pore forming agent causes the pore inside the hydrogel network create interconnection and it was quite influential to drug dissolution mechanism. Interconnected pore is observed with Scanning Electron Microscope (SEM) and shows that the amount and area of interconnected pore inside the hydrogel network is increasing as drug dissolution goes on.
KW - Amoxicillin Trihydrate
KW - Drug Dissolution Method
KW - Hydrogel
KW - Pore Forming Agent
UR - http://www.scopus.com/inward/record.url?scp=85045658611&partnerID=8YFLogxK
U2 - 10.1063/1.5030284
DO - 10.1063/1.5030284
M3 - Conference contribution
AN - SCOPUS:85045658611
T3 - AIP Conference Proceedings
BT - Proceedings of the 3rd International Conference on Materials and Metallurgical Engineering and Technology, ICOMMET 2017
A2 - Hidayat, Mas Irfan P.
PB - American Institute of Physics Inc.
T2 - 3rd International Conference on Materials and Metallurgical Engineering and Technology: Advancing Innovation in Materials Science, Technology and Applications for Sustainable Future, ICOMMET 2017
Y2 - 30 October 2017 through 31 October 2017
ER -