The effect of MTA application on the affected dentine remineralization after partial caries excavation (in vivo)

A. R. Pratiwi, Ratna Meidyawati, RA Nilakusuma Djauharie

Research output: Contribution to journalConference articlepeer-review

7 Citations (Scopus)

Abstract

On deep carious lesions, only thin dentine remains, causing a high risk of pulp exposure during the removal of all infected dentine. A minimally invasive technique is required, such as a partial caries excavation method in the infected dentine tissue and the use of bioactive material that can promote (Mineral Trioxide Aggregate) MTA remineralization. To compare the remineralization of deep carious lesion-affected dentine with the removal of some and all the infected dentine after the application of MTA. Subjects were divided into two groups: group I had only some parts of the infected dentine removed before MTA application, while group II had all the infected dentine removed before MTA application. Each group was measured on the pixel grey value before the treatment and again four weeks after the MTA application, and then the results were compared. Furthermore, the enhancement of both groups' grey values were compared. Remineralization occurred in both groups after the MTA application. There was no significant difference in the remineralization level of the affected dentine in both groups I and II four weeks after the MTA application. Remineralization occurred in the affected dentine in both groups, either by removing only some parts or all the infected dentine in the deep carious lesion.

Original languageEnglish
Article number012119
JournalJournal of Physics: Conference Series
Volume884
Issue number1
DOIs
Publication statusPublished - 30 Aug 2017
Event1st Physics and Technologies in Medicine and Dentistry Symposium, PTMDS 2017 - Depok, West Java, Indonesia
Duration: 15 Jul 201716 Jul 2017

Fingerprint

Dive into the research topics of 'The effect of MTA application on the affected dentine remineralization after partial caries excavation (in vivo)'. Together they form a unique fingerprint.

Cite this