The effect of milling time and sintering temperature on Mn, Ti substituted barium hexaferrite nanoparticle

Erlina Yustanti, Azwar Manaf

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Barium hexaferrite (BaO.6Fe2O3/BaFe12O19) is a permanent magnetic material and microwave absorbing material. The value of microwave absorption can be increased through the engineering of the material structure, while the reduction of crystallite and particle size up to nanometer results device performance improvement to be superior. In this research, the structural engineering through mechanical alloying and crystallite size reduction through high power ultrasonic irradiation will be explained. Mixing and alloying of Sigma Aldrich BaCO3, Fe2O3, MnCO3, TiO2 p.a 99% precursor material used ball mill with powder ratio of vial at 1:10. Mechanical alloying for 60 hours at 160 rpm produced amorphous material. The process of the crystalline embryo nucleation for 4 hours produced multicrystalline material at a sinter temperature of 1100°C. Phase analysis of the mechanical alloying result using x-ray diffractometer was confirmed either the formation of BaO.6Fe2-xMnx/2Tix/2O3 (x=0.5) single phase. Multicrystalline powder of BaO.6Fe2-xMnx/2Tix/2O3 (x=0.5) was obtained through 20 hours hand grinding and re-milling to bulk sample. Crystallite size reduction in the analysis was conducted through particle density variation in ultrasonic reactor and variation of the increase in ultrasonic time. Increase in milling time up to 60 hours produced fragmenting so that particle size reduction from 18.8 μm to 0.9 μm was occurred. The 12-h ultrasonic irradiation at a frequency of 20 kHz amplitude of 60 μm produced a crystallite-size reduction up to 18 nm at a 10 g/L particle density.

Original languageEnglish
Title of host publicationProceedings of the 3rd International Conference on Materials and Metallurgical Engineering and Technology, ICOMMET 2017
Subtitle of host publicationAdvancing Innovation in Materials Science, Technology and Applications for Sustainable Future
EditorsMas Irfan P. Hidayat
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735416406
DOIs
Publication statusPublished - 3 Apr 2018
Event3rd International Conference on Materials and Metallurgical Engineering and Technology: Advancing Innovation in Materials Science, Technology and Applications for Sustainable Future, ICOMMET 2017 - Surabaya, Indonesia
Duration: 30 Oct 201731 Oct 2017

Publication series

NameAIP Conference Proceedings
Volume1945
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference3rd International Conference on Materials and Metallurgical Engineering and Technology: Advancing Innovation in Materials Science, Technology and Applications for Sustainable Future, ICOMMET 2017
Country/TerritoryIndonesia
CitySurabaya
Period30/10/1731/10/17

Fingerprint

Dive into the research topics of 'The effect of milling time and sintering temperature on Mn, Ti substituted barium hexaferrite nanoparticle'. Together they form a unique fingerprint.

Cite this