TY - JOUR
T1 - The development of smoothed particle hydrodynamics (SPH) method for modeling the interaction movement of fluid layers in between two soil layers in flat surface condition
AU - Saffanah, H.
AU - Bahsan, E.
AU - Marthanty, R. R.D.R.
N1 - Publisher Copyright:
© 2021 Institute of Physics Publishing. All rights reserved.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/1/7
Y1 - 2021/1/7
N2 - The liquefaction phenomenon most often happens in saturated, loose, and low density such as sandy soils. When the bearing capacity drops, loose sand tends to become compressed and behaves like a liquid. This behavior generates an interaction between sandy soils and clay soils which has a higher permeability and include its water content. Therefore, it required a method that can model large deformation movements, namely the free particle method, Smoothed Particle Hydrodynamics (SPH). The SPH Method is used to determine the layer of water formed during the cyclic load to approach the liquefaction phenomenon. The model use clay soils as solid and water layers as fluid with model geometry 0.1x0.1x0.05 m. Program parameters represent clay soils with stiffness coefficient, solid volume, and critical shear strength also fluid layers with damping coefficient, fluid volume, and viscosity. The calculation is done with Fortran Program and visualized in 2 Dimension and 3 Dimension with Gnuplot. Both will be evaluated from the movement of solid and fluid also numeric stability. In the final model the parameters Ks = 20000 N/m, Ks = 53.3 Ns/m, dan x particle = 50 reach numeric stability and all fluid particles can recognize the solid layer.
AB - The liquefaction phenomenon most often happens in saturated, loose, and low density such as sandy soils. When the bearing capacity drops, loose sand tends to become compressed and behaves like a liquid. This behavior generates an interaction between sandy soils and clay soils which has a higher permeability and include its water content. Therefore, it required a method that can model large deformation movements, namely the free particle method, Smoothed Particle Hydrodynamics (SPH). The SPH Method is used to determine the layer of water formed during the cyclic load to approach the liquefaction phenomenon. The model use clay soils as solid and water layers as fluid with model geometry 0.1x0.1x0.05 m. Program parameters represent clay soils with stiffness coefficient, solid volume, and critical shear strength also fluid layers with damping coefficient, fluid volume, and viscosity. The calculation is done with Fortran Program and visualized in 2 Dimension and 3 Dimension with Gnuplot. Both will be evaluated from the movement of solid and fluid also numeric stability. In the final model the parameters Ks = 20000 N/m, Ks = 53.3 Ns/m, dan x particle = 50 reach numeric stability and all fluid particles can recognize the solid layer.
UR - http://www.scopus.com/inward/record.url?scp=85100357002&partnerID=8YFLogxK
U2 - 10.1088/1755-1315/622/1/012008
DO - 10.1088/1755-1315/622/1/012008
M3 - Conference article
AN - SCOPUS:85100357002
SN - 1755-1307
VL - 622
JO - IOP Conference Series: Earth and Environmental Science
JF - IOP Conference Series: Earth and Environmental Science
IS - 1
M1 - 012008
T2 - 1st International Seminar on Civil and Environmental Engineering: Robust Infrastructure Resilient to Natural Disaster, ISCEE 2020
Y2 - 2 November 2020 through 4 November 2020
ER -