TY - JOUR
T1 - Textile Dye Removal from Aqueous Solution using Modified Graphite Waste/Lanthanum/Chitosan Composite
AU - Kusrini, E.
AU - Wicaksono, B.
AU - Yulizar, Y.
AU - Prasetyanto, E. A.
AU - Gunawan, C.
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2018/3/28
Y1 - 2018/3/28
N2 - We investigated various pre-treatment processes of graphite waste using thermal, mechanical and chemical methods. The aim of this work is to study the performance of modified graphite waste/lanthanum/chitosan composite (MG) as adsorbent for textile dye removal from aqueous solution. Effect of graphite waste resources, adsorbent size and lanthanum concentration on the dye removal were studied in batch experiments. Selectivity of MG was also investigated. Pre-heated graphite waste (NMG) was conducted at 80°C for 1 h, followed by mechanical crushing of the resultant graphite to 75 μm particle size, giving adsorption performance of ∼58%, ∼67%, ∼93% and ∼98% of the model dye rhodamine B (concentration determined by UV-vis spectroscopy at 554 nm), methyl orange (464 nm), methylene blue (664 nm) and methyl violet (580 nm), respectively from aqueous solution. For this process, the system required less than ∼5 min for adsorbent material to be completely saturated with the adsorbate. Further chemical modification of the pre-treated graphite waste (MG) with lanthanum (0.01 - V 0.03 M) and chitosan (0.5% w/w) did not improve the performance of dye adsorption. Under comparable experimental conditions, as those of the 'thermal-mechanical-pre-treated-only' (NMG), modification of graphite waste (MG) with 0.03 M lanthanum and 0.5% w/w chitosan resulted in ∼14%, ∼47%, ∼72% and ∼85% adsorption of rhodamine B, methyl orange, methylene blue and methyl violet, respectively. Selective adsorption of methylene blue at most to ∼79%, followed by methyl orange, methyl violet and rhodamine B with adsorption efficiency ∼67, ∼38, and ∼9% sequentially using MG with 0.03 M lanthanum and 0.5% w/w chitosan.
AB - We investigated various pre-treatment processes of graphite waste using thermal, mechanical and chemical methods. The aim of this work is to study the performance of modified graphite waste/lanthanum/chitosan composite (MG) as adsorbent for textile dye removal from aqueous solution. Effect of graphite waste resources, adsorbent size and lanthanum concentration on the dye removal were studied in batch experiments. Selectivity of MG was also investigated. Pre-heated graphite waste (NMG) was conducted at 80°C for 1 h, followed by mechanical crushing of the resultant graphite to 75 μm particle size, giving adsorption performance of ∼58%, ∼67%, ∼93% and ∼98% of the model dye rhodamine B (concentration determined by UV-vis spectroscopy at 554 nm), methyl orange (464 nm), methylene blue (664 nm) and methyl violet (580 nm), respectively from aqueous solution. For this process, the system required less than ∼5 min for adsorbent material to be completely saturated with the adsorbate. Further chemical modification of the pre-treated graphite waste (MG) with lanthanum (0.01 - V 0.03 M) and chitosan (0.5% w/w) did not improve the performance of dye adsorption. Under comparable experimental conditions, as those of the 'thermal-mechanical-pre-treated-only' (NMG), modification of graphite waste (MG) with 0.03 M lanthanum and 0.5% w/w chitosan resulted in ∼14%, ∼47%, ∼72% and ∼85% adsorption of rhodamine B, methyl orange, methylene blue and methyl violet, respectively. Selective adsorption of methylene blue at most to ∼79%, followed by methyl orange, methyl violet and rhodamine B with adsorption efficiency ∼67, ∼38, and ∼9% sequentially using MG with 0.03 M lanthanum and 0.5% w/w chitosan.
UR - http://www.scopus.com/inward/record.url?scp=85045634054&partnerID=8YFLogxK
U2 - 10.1088/1757-899X/316/1/012029
DO - 10.1088/1757-899X/316/1/012029
M3 - Conference article
AN - SCOPUS:85045634054
SN - 1757-8981
VL - 316
JO - IOP Conference Series: Materials Science and Engineering
JF - IOP Conference Series: Materials Science and Engineering
IS - 1
M1 - 012029
T2 - 15th International Conference on Quality in Research, QiR 2017
Y2 - 24 July 2017 through 27 July 2017
ER -