Take off and landing performance analysis for a flying car model using wind tunnel test method

William Melriz Pardede, Mohammad Adhitya

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Citations (Scopus)

Abstract

The condition of current modern urban cities with increasing population density under the condition of various problems. One of these problems is the continuously increasing number of vehicles that fills the traffic spaces. To resolve that problem, many proposals containing various solutions are submitted and one of it is to create a flying vehicle. The idea of using flying vehicles has been one of popular interest and the research even dates back to 1926. Unfortunately, public interest of this idea has not been replied mutually responded by aeronautics and automotive industries, thus the development of flying cars has been stale for the past 50 years. In the last decade, flying car development has risen again with creation of prototype models such as the aeromobil and VTOL by uber. As one of the institutes that also take part in researching modern vehicles, the advanced vehicle research team of Universitas Indonesia also plays a role with a target to produce a similar vehicle. One of the aspects that helps this research is the use of wind tunnels to calculate the aerodynamic forces of flying car. This thesis covers the factors that affects the measurements of aerodynamic forces on flying car model based on comparison of simulation results using wind tunnel testing. This research is a quantitative type with descriptive design. The results of this research shows what variables that affects the aerodynamics of flying cars and which aspects that needs to be developed within the design of a flying car. Results of this research shows take-off performance distance of 415 m and landing distance of 329 m.

Original languageEnglish
Title of host publicationRecent Progress on
Subtitle of host publicationMechanical, Infrastructure and Industrial Engineering - Proceedings of the International Symposium on Advances in Mechanical Engineering, ISAME 2019: Quality in Research 2019
Editors Nahry, Dwinanti Rika Marthanty
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735419865
DOIs
Publication statusPublished - 6 May 2020
Event16th International Conference on Quality in Research, QiR 2019 - 2019 International Symposium on Advances in Mechanical Engineering, ISAME 2019 - Padang, Indonesia
Duration: 22 Jul 201924 Jul 2019

Publication series

NameAIP Conference Proceedings
Volume2227
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference16th International Conference on Quality in Research, QiR 2019 - 2019 International Symposium on Advances in Mechanical Engineering, ISAME 2019
Country/TerritoryIndonesia
CityPadang
Period22/07/1924/07/19

Fingerprint

Dive into the research topics of 'Take off and landing performance analysis for a flying car model using wind tunnel test method'. Together they form a unique fingerprint.

Cite this