TY - JOUR
T1 - Sythesis of bioavture through hydrodeoxygenation and catalytic cracking from oleic acid using NiMo/Zeolit catalyst
AU - Carli, Michelle Flavin
AU - Susanto, Bambang Heru
AU - Habibie, Thareq Kemal
N1 - Publisher Copyright:
© The Authors, published by EDP Sciences, 2018.
PY - 2018/11/26
Y1 - 2018/11/26
N2 - Currently, fossil fuels are still the primary source of fuel. As has been known, fossil fuel especially aviation fuel is limited resources and can increase greenhouse gas emissions. This condition encourages replacement efforts of avture into bioavture fuel. In this research, bioavture is synthesized through hydrodeoxygenation and catalytic cracking from oleic acid as a model compound using NiMo/Zeolite catalyst. Hydrodeoxygenation carried out under operating conditions: at temperature of 375°C, under 15 bar pressure and for 2.5 hours. The chain of hydrocarbons from the result of hydrodeoxygenation has been cracked by catalytic cracking reaction for 1.5 hours. Variation operating condition used are 360, 375, and 390°C. The liquid product is tested its chemical characteristic, ie acid number, FTIR and GC-MS and its physical characteristics, ie density test and viscosity. Bioavtur that synthesized by catalytic cracking have met the specifications of bioavtur, except the acid number with optimum temperature at 375oC. These conditions with NiMo/Zeolite activated led to dominant yield of 36.32%, selectivity of 38.05%, and conversion of 84.30%. Percentage of yield and selectivity of bioavtur are still low caused by performance of catalyst that is still can not optimum. While, high percentage of conversion caused by high temperature used for catalytic cracking.
AB - Currently, fossil fuels are still the primary source of fuel. As has been known, fossil fuel especially aviation fuel is limited resources and can increase greenhouse gas emissions. This condition encourages replacement efforts of avture into bioavture fuel. In this research, bioavture is synthesized through hydrodeoxygenation and catalytic cracking from oleic acid as a model compound using NiMo/Zeolite catalyst. Hydrodeoxygenation carried out under operating conditions: at temperature of 375°C, under 15 bar pressure and for 2.5 hours. The chain of hydrocarbons from the result of hydrodeoxygenation has been cracked by catalytic cracking reaction for 1.5 hours. Variation operating condition used are 360, 375, and 390°C. The liquid product is tested its chemical characteristic, ie acid number, FTIR and GC-MS and its physical characteristics, ie density test and viscosity. Bioavtur that synthesized by catalytic cracking have met the specifications of bioavtur, except the acid number with optimum temperature at 375oC. These conditions with NiMo/Zeolite activated led to dominant yield of 36.32%, selectivity of 38.05%, and conversion of 84.30%. Percentage of yield and selectivity of bioavtur are still low caused by performance of catalyst that is still can not optimum. While, high percentage of conversion caused by high temperature used for catalytic cracking.
UR - http://www.scopus.com/inward/record.url?scp=85058697271&partnerID=8YFLogxK
U2 - 10.1051/e3sconf/20186702023
DO - 10.1051/e3sconf/20186702023
M3 - Conference article
AN - SCOPUS:85058697271
SN - 2555-0403
VL - 67
JO - E3S Web of Conferences
JF - E3S Web of Conferences
M1 - 02023
T2 - 3rd International Tropical Renewable Energy Conference "Sustainable Development of Tropical Renewable Energy", i-TREC 2018
Y2 - 6 September 2018 through 8 September 2018
ER -