TY - GEN
T1 - Synthesis of pyranopyrazole derivative compounds with nano-Fe3O4catalyst
AU - Cahyana, A. H.
AU - Mufidah, A.
N1 - Publisher Copyright:
© 2021 Author(s).
PY - 2021/7/23
Y1 - 2021/7/23
N2 - Pyranopyrazole is a heterocyclic organic compound in which the skeleton is a pyran ring substituted by pyrazole in the ortho position. Pyranopyrazole can be synthesized using aldehyde, hydrazine, ethyl acetoacetate, and malononitrile as precursors with a multicomponent reaction method. Synthesis of pyranopyrazole is carried out through the Knoevenagel condensation reaction, Michael's addition, and cyclization. In this research, nano-Fe3O4 is synthesized from rust and used cooking oil. Synthesis of pyranopyrazole derivate compound reached the optimal condition within 60 min of the reaction with the amount of nano-Fe3O4 catalyst is 1 % (w/w). Benzaldehyde, 2-hydroxybenzaldehyde, and cinnamaldehyde are used in variations of aldehyde in this research. The results show that the reaction in 60 min using nano-Fe3O4 produces pyranopyrazole derivative compounds. The nano-Fe3O4 is characterized using FTIR, XRD, and SEM-EDS instruments. The resulting products are characterized by FTIR, UV-Visible, and GC-MS.
AB - Pyranopyrazole is a heterocyclic organic compound in which the skeleton is a pyran ring substituted by pyrazole in the ortho position. Pyranopyrazole can be synthesized using aldehyde, hydrazine, ethyl acetoacetate, and malononitrile as precursors with a multicomponent reaction method. Synthesis of pyranopyrazole is carried out through the Knoevenagel condensation reaction, Michael's addition, and cyclization. In this research, nano-Fe3O4 is synthesized from rust and used cooking oil. Synthesis of pyranopyrazole derivate compound reached the optimal condition within 60 min of the reaction with the amount of nano-Fe3O4 catalyst is 1 % (w/w). Benzaldehyde, 2-hydroxybenzaldehyde, and cinnamaldehyde are used in variations of aldehyde in this research. The results show that the reaction in 60 min using nano-Fe3O4 produces pyranopyrazole derivative compounds. The nano-Fe3O4 is characterized using FTIR, XRD, and SEM-EDS instruments. The resulting products are characterized by FTIR, UV-Visible, and GC-MS.
KW - Cinnamaldehyde
KW - Multicomponent reaction
KW - Nano-FeO
KW - Pyranopyrazole
UR - http://www.scopus.com/inward/record.url?scp=85112113780&partnerID=8YFLogxK
U2 - 10.1063/5.0060453
DO - 10.1063/5.0060453
M3 - Conference contribution
AN - SCOPUS:85112113780
T3 - AIP Conference Proceedings
BT - Proceedings of the 6th International Symposium on Current Progress in Mathematics and Sciences 2020, ISCPMS 2020
A2 - Ivandini, Tribidasari A.
A2 - Churchill, David G.
A2 - Lee, Youngil
A2 - Alias, Yatimah Binti
A2 - Margules, Chris
PB - American Institute of Physics Inc.
T2 - 6th International Symposium on Current Progress in Mathematics and Sciences 2020, ISCPMS 2020
Y2 - 27 October 2020 through 28 October 2020
ER -