TY - JOUR
T1 - Synthesis of polymer hybrid latex poly(methyl methacrylate-co-butyl acrylate) with organo montmorillonite via miniemulsion polymerization method for barrier paper
AU - Chanra, J.
AU - Budianto, E.
AU - Soegijono, B.
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2018/3/19
Y1 - 2018/3/19
N2 - Hybrid polymer latex based on combination of organic-inorganic materials, poly(methyl methacrylate-co-butyl acrylate) (PMMBA) and organo-montmorillonite (OMMT) were synthesized via miniemulsion polymerization technique. Modification of montmorillonite (MMT) through the incorporation of myristyltrimethylammonium bromide (MTAB) into the clay's interlayer spaces were investigated by Small-Angle X-ray Scattering (SAXS), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and Transmission Electron Microscopy (TEM). Barrier property and thermal stability of polymer latex film sample were investigated through its Water Vapor Transmission Rate (WVTR) and Thermogravimetric Analysis (TGA). The results indicated that addition of OMMT as filler in PMMBA increased the barrier property and thermal stability of the latex film. Addition of 8.0% (wt) OMMT increased the barrier property and thermal stability. Miniemusion polymerization process with higher addition (>8.0 wt%) of OMMT resulting in high latex viscosity, particle size, and high amount of coagulum. The utilization of this hybrid polymer could benefits paper and board industries to produce high quality barrier paper for food packaging.
AB - Hybrid polymer latex based on combination of organic-inorganic materials, poly(methyl methacrylate-co-butyl acrylate) (PMMBA) and organo-montmorillonite (OMMT) were synthesized via miniemulsion polymerization technique. Modification of montmorillonite (MMT) through the incorporation of myristyltrimethylammonium bromide (MTAB) into the clay's interlayer spaces were investigated by Small-Angle X-ray Scattering (SAXS), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA) and Transmission Electron Microscopy (TEM). Barrier property and thermal stability of polymer latex film sample were investigated through its Water Vapor Transmission Rate (WVTR) and Thermogravimetric Analysis (TGA). The results indicated that addition of OMMT as filler in PMMBA increased the barrier property and thermal stability of the latex film. Addition of 8.0% (wt) OMMT increased the barrier property and thermal stability. Miniemusion polymerization process with higher addition (>8.0 wt%) of OMMT resulting in high latex viscosity, particle size, and high amount of coagulum. The utilization of this hybrid polymer could benefits paper and board industries to produce high quality barrier paper for food packaging.
UR - http://www.scopus.com/inward/record.url?scp=85045646165&partnerID=8YFLogxK
U2 - 10.1088/1742-6596/985/1/012029
DO - 10.1088/1742-6596/985/1/012029
M3 - Conference article
AN - SCOPUS:85045646165
SN - 1742-6588
VL - 985
JO - Journal of Physics: Conference Series
JF - Journal of Physics: Conference Series
IS - 1
M1 - 012029
T2 - 3rd International Symposium on Frontier of Applied Physics, ISFAP 2017
Y2 - 23 October 2017 through 24 October 2017
ER -