TY - GEN
T1 - Synthesis of methyl ester sulfonate surfactant from crude palm oil as an active substance of laundry liquid detergent
AU - Slamet,
AU - Ibadurrohman, Muhammad
AU - Wulandari, Pangiastika Putri
N1 - Publisher Copyright:
© 2017 Author(s).
PY - 2017/11/27
Y1 - 2017/11/27
N2 - Liquid detergent with combination of MES surfactant and TiO2 nanoparticles to remove and degrade the dirt in the form of methylene blue and produce waste with the lowest surfactant residual concentration has been done. The formation of MES is carried out by esterification and transesterification of crude palm oil, sulfonation, refining, and neutralization. The photocatalyst TiO2 nanoparticles is added as an additive to improve surfactant performance in removing dirt and degrading organic compounds. MES formation is performed by varying the mole ratio of the reactants in the esterification and transesterification reactions, and the mole ratios between methyl esters and NaHSO3 during the sulfonation reaction. Variations of MES surfactant and TiO2 nanoparticles compositions were performed to obtain detergent stability. Data analysis technique in this research is characterization of methyl ester, MES surfactant, and detergent using UV-Vis spectrophotometer instrument, FTIR, GC-MS, and LC-MS. The optimum conditions in the esterification and transesterification process were each mole ratio of 1: 6 between CPO and methanol based on the highest conversion, 99%. The optimum condition of the sulfonation process is the 1: 1.5 mole ratio between methyl ester and NaHSO3 based on the lowest surface tension value, which is about 36 dyne/cm.
AB - Liquid detergent with combination of MES surfactant and TiO2 nanoparticles to remove and degrade the dirt in the form of methylene blue and produce waste with the lowest surfactant residual concentration has been done. The formation of MES is carried out by esterification and transesterification of crude palm oil, sulfonation, refining, and neutralization. The photocatalyst TiO2 nanoparticles is added as an additive to improve surfactant performance in removing dirt and degrading organic compounds. MES formation is performed by varying the mole ratio of the reactants in the esterification and transesterification reactions, and the mole ratios between methyl esters and NaHSO3 during the sulfonation reaction. Variations of MES surfactant and TiO2 nanoparticles compositions were performed to obtain detergent stability. Data analysis technique in this research is characterization of methyl ester, MES surfactant, and detergent using UV-Vis spectrophotometer instrument, FTIR, GC-MS, and LC-MS. The optimum conditions in the esterification and transesterification process were each mole ratio of 1: 6 between CPO and methanol based on the highest conversion, 99%. The optimum condition of the sulfonation process is the 1: 1.5 mole ratio between methyl ester and NaHSO3 based on the lowest surface tension value, which is about 36 dyne/cm.
UR - http://www.scopus.com/inward/record.url?scp=85038957389&partnerID=8YFLogxK
U2 - 10.1063/1.5011915
DO - 10.1063/1.5011915
M3 - Conference contribution
AN - SCOPUS:85038957389
T3 - AIP Conference Proceedings
BT - Proceedings of the 3rd International Symposium on Applied Chemistry 2017
A2 - Tursiloadi, Silvester
A2 - Rinaldi, Nino
PB - American Institute of Physics Inc.
T2 - 3rd International Symposium on Applied Chemistry 2017, ISAC 2017
Y2 - 23 October 2017 through 24 October 2017
ER -