TY - JOUR
T1 - Synthesis, characterization, and electrochemical behavior of Au@Pd core shell nanoparticles
AU - Wicaksono, W. P.
AU - Anggraningrum, Ivandini Tribidasari
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2017/5/2
Y1 - 2017/5/2
N2 - Au@Pd core shell nanoparticles (Au@Pd CSNPs) were successfully synthesized using a seed-mediated growth method. Firstly, a pale pink gold seed solution was used to produce a pale purple gold nanoparticles (AuNPs) core solution. Then, three series of Pd shell thickness using 20μ, 100 μL, and 500 μL of PdCl2 produced purple, brown, and deep brown of Au@Pd CSNPs respectively. A strong absorbance UV-Visible spectrum with peaks at 285 nm and 535 nm was identified for AuNPs formation. The disappearance of the peak at 535 nm was indicated the Au@Pd CSNPs formation. The electrochemical properties were examined in phosphate buffer pH 7 using cyclic voltammetry technique with boron-doped diamond (BDD) as working electrode showed a couple oxidation and reduction peak of gold at 0.67 V and at 0.33 V, respectively. The Au@Pd CNPs will be used for modification of BDD electrodes.
AB - Au@Pd core shell nanoparticles (Au@Pd CSNPs) were successfully synthesized using a seed-mediated growth method. Firstly, a pale pink gold seed solution was used to produce a pale purple gold nanoparticles (AuNPs) core solution. Then, three series of Pd shell thickness using 20μ, 100 μL, and 500 μL of PdCl2 produced purple, brown, and deep brown of Au@Pd CSNPs respectively. A strong absorbance UV-Visible spectrum with peaks at 285 nm and 535 nm was identified for AuNPs formation. The disappearance of the peak at 535 nm was indicated the Au@Pd CSNPs formation. The electrochemical properties were examined in phosphate buffer pH 7 using cyclic voltammetry technique with boron-doped diamond (BDD) as working electrode showed a couple oxidation and reduction peak of gold at 0.67 V and at 0.33 V, respectively. The Au@Pd CNPs will be used for modification of BDD electrodes.
UR - http://www.scopus.com/inward/record.url?scp=85019697420&partnerID=8YFLogxK
U2 - 10.1088/1757-899X/188/1/012057
DO - 10.1088/1757-899X/188/1/012057
M3 - Conference article
AN - SCOPUS:85019697420
SN - 1757-8981
VL - 188
JO - IOP Conference Series: Materials Science and Engineering
JF - IOP Conference Series: Materials Science and Engineering
IS - 1
M1 - 012057
T2 - International Symposium on Current Progress in Functional Materials 2016, ISCPFM 2016
Y2 - 26 July 2016 through 27 July 2016
ER -