TY - JOUR
T1 - Synthesis and characterization of ZnO nanorods prepared using microwave-assisted hydrothermal method
AU - Ridwan, M.
AU - Fauzia, V.
AU - Roza, L.
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2019/2/22
Y1 - 2019/2/22
N2 - ZnO is one of the most studied semiconductor materials for many applications; however, the synthesis of one-dimensional ZnO nanostructures by a simple and low-cost method in a short time is still a big challenge. The hydrothermal method is a simple way to produce nanostructures but the process is usually slow. However, the reaction can be accelerated using microwaves. This study aims to grow ZnO nanorods were on the glass substrates using ultrasonic spray pyrolysis and microwave-assisted hydrothermal methods. Our goal was to investigate the effect of the concentration of the growth solution containing equimolar amounts of hexamethyelenentetramine and zinc nitrate tetrahydrate (0.05, 0.1, and 0.15 M) on the morphology and structural and optical properties of the ZnO nanorods. Scanning electron microscopy, X-ray diffraction, and ultraviolet (UV)-visible spectroscopy studies demonstrated that an increase in the concentration of the growth solution results in an increase in the lattice parameters, unit-cell volume, crystallite size, density, and diameter of the nanorods. In addition, increasing the precursor concentrations improves the optical absorbance in the UV region and leads to a slight increase in the bandgap energy (from 3.20 to 3.22 eV).
AB - ZnO is one of the most studied semiconductor materials for many applications; however, the synthesis of one-dimensional ZnO nanostructures by a simple and low-cost method in a short time is still a big challenge. The hydrothermal method is a simple way to produce nanostructures but the process is usually slow. However, the reaction can be accelerated using microwaves. This study aims to grow ZnO nanorods were on the glass substrates using ultrasonic spray pyrolysis and microwave-assisted hydrothermal methods. Our goal was to investigate the effect of the concentration of the growth solution containing equimolar amounts of hexamethyelenentetramine and zinc nitrate tetrahydrate (0.05, 0.1, and 0.15 M) on the morphology and structural and optical properties of the ZnO nanorods. Scanning electron microscopy, X-ray diffraction, and ultraviolet (UV)-visible spectroscopy studies demonstrated that an increase in the concentration of the growth solution results in an increase in the lattice parameters, unit-cell volume, crystallite size, density, and diameter of the nanorods. In addition, increasing the precursor concentrations improves the optical absorbance in the UV region and leads to a slight increase in the bandgap energy (from 3.20 to 3.22 eV).
KW - hydrothermal
KW - microwave
KW - nanorods
KW - semiconductor
KW - ZnO
UR - http://www.scopus.com/inward/record.url?scp=85066867488&partnerID=8YFLogxK
U2 - 10.1088/1757-899X/496/1/012018
DO - 10.1088/1757-899X/496/1/012018
M3 - Conference article
AN - SCOPUS:85066867488
SN - 1757-8981
VL - 496
JO - IOP Conference Series: Materials Science and Engineering
JF - IOP Conference Series: Materials Science and Engineering
IS - 1
M1 - 012018
T2 - 2nd International Conference on Current Progress in Functional Materials 2017, ISCPFM 2017
Y2 - 8 November 2017 through 9 November 2017
ER -