TY - JOUR
T1 - Study of the use of nanomaterials as drilling mud additives
AU - Kusrini, Eny
AU - Suseno, Bayu
AU - Khalil, Munawar
AU - Nasruddin, null
AU - Usman, Anwar
N1 - Publisher Copyright:
© The Authors, published by EDP Sciences, 2018.
PY - 2018/11/26
Y1 - 2018/11/26
N2 - Previous research on drilling mud concludes that oil-based mud is the best drilling fluid, but is not recommended because it is unsustainable and environmentally unfriendly. Therefore, research has been conducted on additives that can be used for water-based mud, making it equal or even superior in quality to oil-based mud. The use of graphene as a drilling mud additive may form mud cake as a filtration barrier, and the use of magnesium oxide (MgO) may increase the viscosity value. Rheological analysis is conducted using the Bingham plastic method, a simple method generally used in the oil and gas fields, whereas use of the Power Law model can provide better modelling of Bingham plastic that cannot be achieved for well under surface analysis. Tension limit simulation was performed to determine the safe limits of the tool's ability to withstand loads. Control of equivalent circulation density (ECD) is very important; if this is too high it can cause loss of circulation, and if too low it can cause kick. In Bingham plastic, the value of plastic viscosity and the yield strength of the graphene additive increased by 25 and 32%, respectively, compared to the base formula. The MgO yield strength value is too high, indicating that MgO cannot be used as a drilling mud fluid additive. In graphene oxide (GO) additives, there is a decrease in plastic viscosity of 50% and an increase in yield strength of up 180%. The graphene torque limit value increased by 0.2% and the drilling depth increased by 2.8% compared to the base formula. The GO torque limit value increased by 0.2% and the drilling depth increased by 2.08% from the base formula, while the tension limit of the graphene additive increased by 38.8% from the base formula and on the GO decreased by 2.11%. From the ECD simulation, graphene is more suitable for wells with high formation pressures, GO is more suitable for low pressure wells.
AB - Previous research on drilling mud concludes that oil-based mud is the best drilling fluid, but is not recommended because it is unsustainable and environmentally unfriendly. Therefore, research has been conducted on additives that can be used for water-based mud, making it equal or even superior in quality to oil-based mud. The use of graphene as a drilling mud additive may form mud cake as a filtration barrier, and the use of magnesium oxide (MgO) may increase the viscosity value. Rheological analysis is conducted using the Bingham plastic method, a simple method generally used in the oil and gas fields, whereas use of the Power Law model can provide better modelling of Bingham plastic that cannot be achieved for well under surface analysis. Tension limit simulation was performed to determine the safe limits of the tool's ability to withstand loads. Control of equivalent circulation density (ECD) is very important; if this is too high it can cause loss of circulation, and if too low it can cause kick. In Bingham plastic, the value of plastic viscosity and the yield strength of the graphene additive increased by 25 and 32%, respectively, compared to the base formula. The MgO yield strength value is too high, indicating that MgO cannot be used as a drilling mud fluid additive. In graphene oxide (GO) additives, there is a decrease in plastic viscosity of 50% and an increase in yield strength of up 180%. The graphene torque limit value increased by 0.2% and the drilling depth increased by 2.8% compared to the base formula. The GO torque limit value increased by 0.2% and the drilling depth increased by 2.08% from the base formula, while the tension limit of the graphene additive increased by 38.8% from the base formula and on the GO decreased by 2.11%. From the ECD simulation, graphene is more suitable for wells with high formation pressures, GO is more suitable for low pressure wells.
UR - http://www.scopus.com/inward/record.url?scp=85058677703&partnerID=8YFLogxK
U2 - 10.1051/e3sconf/20186702007
DO - 10.1051/e3sconf/20186702007
M3 - Conference article
AN - SCOPUS:85058677703
SN - 2555-0403
VL - 67
JO - E3S Web of Conferences
JF - E3S Web of Conferences
M1 - 02007
T2 - 3rd International Tropical Renewable Energy Conference "Sustainable Development of Tropical Renewable Energy", i-TREC 2018
Y2 - 6 September 2018 through 8 September 2018
ER -