TY - JOUR
T1 - Structural modifications of ICAM-1 cyclic peptides to improve the activity to inhibit heterotypic adhesion of T cells
AU - Iskandarsyah, null
AU - Tejo, Bimo A.
AU - Friend, Usman Sumo
AU - Verkhivker, Gennady
AU - Siahaan, Teruna J.
PY - 2008/7
Y1 - 2008/7
N2 - Lymphocyte function-associated antigen-1 (LFA-1)/intercellular adhesion molecule-1 (ICAM-1) interaction plays an important role in the formation of the immunological synapse between T cells and antigen-presenting cells. Blocking of LFA-1/ICAM-1 interactions has been shown to suppress the progression of autoimmune diseases. cIBR peptide (cyclo(1,12)PenPRGGSVLVTGC) inhibits ICAM-1/LFA-1 interaction by binding to the I-domain of LFA-1. To increase the bioactivity of cIBR peptide, we systemically modified the structure of the peptide by (i) replacing the Pen residue at the N-terminus with Cys, (ii) cyclization using amide bond formation between Lys-Glu side chains, and (iii) reducing the peptide size by eliminating the C-terminal residue. We found that the activity of cIBR peptide was not affected by replacing Phe with Cys. Peptide cyclization by forming the Lys-Glu amide bond also increased the activity of cIBR peptide, presumably due to the resistance of the amide bond to the reducing nature of glutathione in plasma. We also found that a reduced derivative of cIBR with eight residues (cyclo(1,8)CPRGGSVC) has a bioactivity similar to that of the larger cIBR peptides. Our findings suggest that, by systemically modifying the structure of cIBR peptide, the biological activity of these derivatives can be optimized for future use to inhibit T-cell adhesion in in vivo models of autoimmune diseases.
AB - Lymphocyte function-associated antigen-1 (LFA-1)/intercellular adhesion molecule-1 (ICAM-1) interaction plays an important role in the formation of the immunological synapse between T cells and antigen-presenting cells. Blocking of LFA-1/ICAM-1 interactions has been shown to suppress the progression of autoimmune diseases. cIBR peptide (cyclo(1,12)PenPRGGSVLVTGC) inhibits ICAM-1/LFA-1 interaction by binding to the I-domain of LFA-1. To increase the bioactivity of cIBR peptide, we systemically modified the structure of the peptide by (i) replacing the Pen residue at the N-terminus with Cys, (ii) cyclization using amide bond formation between Lys-Glu side chains, and (iii) reducing the peptide size by eliminating the C-terminal residue. We found that the activity of cIBR peptide was not affected by replacing Phe with Cys. Peptide cyclization by forming the Lys-Glu amide bond also increased the activity of cIBR peptide, presumably due to the resistance of the amide bond to the reducing nature of glutathione in plasma. We also found that a reduced derivative of cIBR with eight residues (cyclo(1,8)CPRGGSVC) has a bioactivity similar to that of the larger cIBR peptides. Our findings suggest that, by systemically modifying the structure of cIBR peptide, the biological activity of these derivatives can be optimized for future use to inhibit T-cell adhesion in in vivo models of autoimmune diseases.
KW - Mechanism-based drug design
KW - Peptide
KW - Receptor and ligands (agonist/antagonist)
KW - Structure-based drug design
UR - http://www.scopus.com/inward/record.url?scp=45449118958&partnerID=8YFLogxK
U2 - 10.1111/j.1747-0285.2008.00676.x
DO - 10.1111/j.1747-0285.2008.00676.x
M3 - Article
C2 - 18554252
AN - SCOPUS:45449118958
SN - 1747-0277
VL - 72
SP - 27
EP - 33
JO - Chemical Biology and Drug Design
JF - Chemical Biology and Drug Design
IS - 1
ER -