Steady State Modification Method Based on Backpropagation Neural Network for Non-Intrusive Load Monitoring (NILM)

Sigit Tri Atmaja, Abdul Halim

Research output: Contribution to journalConference articlepeer-review

2 Citations (Scopus)

Abstract

Household electric power sector is highlighted as one of significant contributors to national energy consumption. To reduce electric energy usage in this sector, a technique called Non-Intrusive Load Monitoring (NILM) has been developed recently. NILM is a load disaggregating and monitoring tool that can be used to identify the daily usage behavior of individual electric appliance. Different to conventional method, NILM promises the reduction of sensor deployment significantly. NILM commonly uses either transient or steady state signal. Based on load/appliance signal condition, many NILM's research results have been published. In this paper, steady state modification method of backpropagation neural network (NN) is applied for developing NILM. We use steady state signal to disaggregate the sum of load power signal. In the proposed method, NN is explored for feature extraction of electric power consumption of individual appliance. The presented method is powerful for load power signal which has almost same value. To verify the effectiveness of proposed method, data provided by tracebase.org has been used. The presented method can be applied for local data. It is obvious from simulation results that the proposed method could improve the recognition rate of appliances until 100 %.

Original languageEnglish
Article number02013
JournalMATEC Web of Conferences
Volume218
DOIs
Publication statusPublished - 26 Oct 2018
Event1st International Conference on Industrial, Electrical and Electronics, ICIEE 2018 - Anyer, Indonesia
Duration: 4 Sep 20185 Sep 2018

Fingerprint

Dive into the research topics of 'Steady State Modification Method Based on Backpropagation Neural Network for Non-Intrusive Load Monitoring (NILM)'. Together they form a unique fingerprint.

Cite this