### Abstract

The eigenvalue of a dynamical system can be used to determine the stability of such system. In general, the eigenvalues will form two kinds of spectrum, i.e. the continuous and point spectra. This paper will presents two methods for determining the spectrum of eigenvalues, i.e., the Sturm-Liouville Theory and the Evans function. In this paper we use the Fisher-Kolmogorov-Petrovsky-Pischunov equation, as well as the Newton Raphson and Runge Kutta methods for numerical calculations.

Original language | English |
---|---|

Title of host publication | International Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016 |

Subtitle of host publication | Proceedings of the 2nd International Symposium on Current Progress in Mathematics and Sciences 2016 |

Editors | Kiki Ariyanti Sugeng, Djoko Triyono, Terry Mart |

Publisher | American Institute of Physics Inc. |

ISBN (Electronic) | 9780735415362 |

DOIs | |

Publication status | Published - 10 Jul 2017 |

Event | 2nd International Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016 - Depok, Jawa Barat, Indonesia Duration: 1 Nov 2016 → 2 Nov 2016 |

### Publication series

Name | AIP Conference Proceedings |
---|---|

Volume | 1862 |

ISSN (Print) | 0094-243X |

ISSN (Electronic) | 1551-7616 |

### Conference

Conference | 2nd International Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016 |
---|---|

Country | Indonesia |

City | Depok, Jawa Barat |

Period | 1/11/16 → 2/11/16 |

## Fingerprint Dive into the research topics of 'Spectrum analysis on Fisher-Kolmogorov-Petrovsky-Pischunov equation using Evans function approach'. Together they form a unique fingerprint.

## Cite this

Lestari, I. I., Bachtiar, A. H. A., & Wibowo, A. (2017). Spectrum analysis on Fisher-Kolmogorov-Petrovsky-Pischunov equation using Evans function approach. In K. A. Sugeng, D. Triyono, & T. Mart (Eds.),

*International Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016: Proceedings of the 2nd International Symposium on Current Progress in Mathematics and Sciences 2016*[030145] (AIP Conference Proceedings; Vol. 1862). American Institute of Physics Inc.. https://doi.org/10.1063/1.4991249