Spectrum analysis on Fisher-Kolmogorov-Petrovsky-Pischunov equation using Evans function approach

I. I. Lestari, Al Haji Akbar Bachtiar, Adi Wibowo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The eigenvalue of a dynamical system can be used to determine the stability of such system. In general, the eigenvalues will form two kinds of spectrum, i.e. the continuous and point spectra. This paper will presents two methods for determining the spectrum of eigenvalues, i.e., the Sturm-Liouville Theory and the Evans function. In this paper we use the Fisher-Kolmogorov-Petrovsky-Pischunov equation, as well as the Newton Raphson and Runge Kutta methods for numerical calculations.

Original languageEnglish
Title of host publicationInternational Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016
Subtitle of host publicationProceedings of the 2nd International Symposium on Current Progress in Mathematics and Sciences 2016
EditorsKiki Ariyanti Sugeng, Djoko Triyono, Terry Mart
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735415362
DOIs
Publication statusPublished - 10 Jul 2017
Event2nd International Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016 - Depok, Jawa Barat, Indonesia
Duration: 1 Nov 20162 Nov 2016

Publication series

NameAIP Conference Proceedings
Volume1862
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference2nd International Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016
CountryIndonesia
CityDepok, Jawa Barat
Period1/11/162/11/16

Fingerprint Dive into the research topics of 'Spectrum analysis on Fisher-Kolmogorov-Petrovsky-Pischunov equation using Evans function approach'. Together they form a unique fingerprint.

  • Cite this

    Lestari, I. I., Bachtiar, A. H. A., & Wibowo, A. (2017). Spectrum analysis on Fisher-Kolmogorov-Petrovsky-Pischunov equation using Evans function approach. In K. A. Sugeng, D. Triyono, & T. Mart (Eds.), International Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016: Proceedings of the 2nd International Symposium on Current Progress in Mathematics and Sciences 2016 [030145] (AIP Conference Proceedings; Vol. 1862). American Institute of Physics Inc.. https://doi.org/10.1063/1.4991249