TY - JOUR
T1 - Simultaneous detection of purine and pyrimidine at highly boron-doped diamond electrodes by using liquid chromatography
AU - Anggraningrum, Ivandini Tribidasari
AU - Honda, Kensuke
AU - Rao, Tata N.
AU - Fujishima, Akira
AU - Einaga, Yasuaki
PY - 2007/2/15
Y1 - 2007/2/15
N2 - Highly boron-doped diamond (BDD) electrode, have been examined for simultaneous detection of purine and pyrimidine bases in mild acidic media by using HPLC with amperometric detection. Cyclic voltammetry at as-deposited (AD) and anodically oxidized (AO) BDD were used to study the electrochemistry and to optimize the condition for HPLC applications. At AO BDD electrode, due to its higher overpotential of oxygen evolution reaction, well-defined anodic peaks were observed for the oxidation of purine and pyrimidine bases in acid medium, whereas at AD BDD the oxidation peak of thymine was overlapped with the anodic current of oxygen evolution. The chromatograms of adenine, guanine, cytosine, thymine and 5-methylcytosine mixture were well resolved by using a silica-based column and a solution of 5% acetonitrile in 100 mM ammonium acetate buffer (pH 4.25) as the mobile phase. The detection was carried out at AO BDD electrode at an applied potential of 1.6 V versus Ag/AgCl. Linear calibration curves were obtained within the concentration range from 0.1 to 10 μM with the limits of detection (S/N = 3) ranging from 26.3 to 162.1 nM, resulting in an order of magnitude higher sensitivities than those at conventional electrodes. HPLC analysis with diamond amperometric detector was successfully applied for determination of 5-methylcytosine in real DNA samples with high reproducibility. No deactivation of the electrode was found during cyclic voltammetric and HPLC measurements, indicating the high stability for analysis of biological samples.
AB - Highly boron-doped diamond (BDD) electrode, have been examined for simultaneous detection of purine and pyrimidine bases in mild acidic media by using HPLC with amperometric detection. Cyclic voltammetry at as-deposited (AD) and anodically oxidized (AO) BDD were used to study the electrochemistry and to optimize the condition for HPLC applications. At AO BDD electrode, due to its higher overpotential of oxygen evolution reaction, well-defined anodic peaks were observed for the oxidation of purine and pyrimidine bases in acid medium, whereas at AD BDD the oxidation peak of thymine was overlapped with the anodic current of oxygen evolution. The chromatograms of adenine, guanine, cytosine, thymine and 5-methylcytosine mixture were well resolved by using a silica-based column and a solution of 5% acetonitrile in 100 mM ammonium acetate buffer (pH 4.25) as the mobile phase. The detection was carried out at AO BDD electrode at an applied potential of 1.6 V versus Ag/AgCl. Linear calibration curves were obtained within the concentration range from 0.1 to 10 μM with the limits of detection (S/N = 3) ranging from 26.3 to 162.1 nM, resulting in an order of magnitude higher sensitivities than those at conventional electrodes. HPLC analysis with diamond amperometric detector was successfully applied for determination of 5-methylcytosine in real DNA samples with high reproducibility. No deactivation of the electrode was found during cyclic voltammetric and HPLC measurements, indicating the high stability for analysis of biological samples.
KW - Anodically oxidized diamond
KW - DNA damage
KW - Liquid chromatography
KW - Purine
KW - Pyrimidine
UR - http://www.scopus.com/inward/record.url?scp=33846223253&partnerID=8YFLogxK
U2 - 10.1016/j.talanta.2006.05.009
DO - 10.1016/j.talanta.2006.05.009
M3 - Article
C2 - 19071355
AN - SCOPUS:33846223253
SN - 0039-9140
VL - 71
SP - 648
EP - 655
JO - Talanta
JF - Talanta
IS - 2
ER -