TY - JOUR
T1 - Seismic vulnerability assessment of residential buildings using logistic regression and geographic information system (GIS) in Pleret Sub District (Yogyakarta, Indonesia)
AU - Saputra, Aditya
AU - Rahardianto, Trias
AU - Revindo, Mohamad Dian
AU - Delikostidis, Ioannis
AU - Hadmoko, Danang Sri
AU - Sartohadi, Junun
AU - Gomez, Christopher
N1 - Funding Information:
This paper is part of the PhD research at Dept. of Geography, University of Canterbury, New Zealand, which is funded by the Indonesia Endowment Fund for Education (LPDP-Indonesia). The author is thankful to main supervisor, Dr. Christopher Gomez, who has supported this project, co supervisor Dr. Ioannis Delikostidis, Dr. Danang Sri Hadmoko and Prof. Dr. Junun Sartohadi. We also acknowledge the University of Canterbury New Zealand who provided adequate reference for this project.
Funding Information:
This paper is part of the PhD research at Dept. of Geography, University of Canterbury, New Zealand, which is funded by the Indonesia Endowment Fund for Education (LPDP-Indonesia). The author is thankful to main supervisor, Dr. Christopher Gomez, who has supported this project, co supervisor Dr. Ioannis Delikostidis, Dr. Danang Sri Hadmoko and Prof. Dr. Junun Sartohadi. We also acknowledge the University of Canterbury New Zealand who provided adequate reference for this project. AS and CG collected the data, AS carried out the analysis of coseismic landslide, CG and ID support on the interpretation of the results. TR support on the analysis of building vulnerability and MDR support on the statistical analysis. AS drafted the manuscript, CG, DSH and JS revised the manuscript. All the authors drafted, read and approved the final manuscript. The authors declare that they have no competing interests. Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Publisher Copyright:
© 2017, The Author(s).
PY - 2017/12/1
Y1 - 2017/12/1
N2 - Background: The Southeast of Yogyakarta City has had the heaviest damages to buildings in the 2006 of Yogyakarta Earthquake disaster. A moderate to strong earthquake of 6.3 Mw shook the 20 km southeast part of the Yogyakarta City early in the morning at 5:54 local time. On top of extensive damage in Yogyakarta and Central Java, more than 5700 people perished; 37,927 people were injured in the collapse of more than 240,396 residential buildings. Furthermore, the earthquake also affected the infrastructure and local economic activities. The total damages and losses because of the earthquake was 29.1 trillion rupiahs or equal to approximately 3.1 million US dollar. Two main factors that caused the severe damages were a dense population and the lack of seismic design of residential buildings. After reconstruction and rehabilitation, the area where the study was conducted grew into a densely populated area. This urbanistic change is feared to be potentially the lead to a great disaster if an earthquake occurs again. Thus, a comprehensive study about building vulnerability is absolutely needed in study area. Therefore, the main objective of this study has been the provision of a probabilistic model of seismic building vulnerability based on the damage data of the last big earthquake. By considering the relationship between building characteristics, site conditions, and the damage level based on probabilistic analysis, this study can offer a better understanding of earthquake damage estimation for residential building in Java. Results: The main findings of this study were as follows: The most vulnerable building type is the reinforced masonry structure with clay tile roof, it is located between 8.1-10 km of the epicentre and it is built on young Merapi volcanic deposits. On the contrary, the safest building type is the houses which has characteristics of reinforced masonry structure, asbestos or zinc roof type, and being located in Semilir Formation. The results showed that the building damage probability provided a high accuracy of prediction about 75.81%. Conclusions: The results explain the prediction of building vulnerability based on the building damaged of the Yogyakarta earthquake 2006. This study is suitable for preliminary study at the region scale. Thus, the site investigation still needs to be conducted for the future research to determine the safety and vulnerability of residential building.
AB - Background: The Southeast of Yogyakarta City has had the heaviest damages to buildings in the 2006 of Yogyakarta Earthquake disaster. A moderate to strong earthquake of 6.3 Mw shook the 20 km southeast part of the Yogyakarta City early in the morning at 5:54 local time. On top of extensive damage in Yogyakarta and Central Java, more than 5700 people perished; 37,927 people were injured in the collapse of more than 240,396 residential buildings. Furthermore, the earthquake also affected the infrastructure and local economic activities. The total damages and losses because of the earthquake was 29.1 trillion rupiahs or equal to approximately 3.1 million US dollar. Two main factors that caused the severe damages were a dense population and the lack of seismic design of residential buildings. After reconstruction and rehabilitation, the area where the study was conducted grew into a densely populated area. This urbanistic change is feared to be potentially the lead to a great disaster if an earthquake occurs again. Thus, a comprehensive study about building vulnerability is absolutely needed in study area. Therefore, the main objective of this study has been the provision of a probabilistic model of seismic building vulnerability based on the damage data of the last big earthquake. By considering the relationship between building characteristics, site conditions, and the damage level based on probabilistic analysis, this study can offer a better understanding of earthquake damage estimation for residential building in Java. Results: The main findings of this study were as follows: The most vulnerable building type is the reinforced masonry structure with clay tile roof, it is located between 8.1-10 km of the epicentre and it is built on young Merapi volcanic deposits. On the contrary, the safest building type is the houses which has characteristics of reinforced masonry structure, asbestos or zinc roof type, and being located in Semilir Formation. The results showed that the building damage probability provided a high accuracy of prediction about 75.81%. Conclusions: The results explain the prediction of building vulnerability based on the building damaged of the Yogyakarta earthquake 2006. This study is suitable for preliminary study at the region scale. Thus, the site investigation still needs to be conducted for the future research to determine the safety and vulnerability of residential building.
KW - Building vulnerability
KW - Damage pattern
KW - Earthquake
KW - Probabilistic model
UR - http://www.scopus.com/inward/record.url?scp=85045628627&partnerID=8YFLogxK
U2 - 10.1186/s40677-017-0075-z
DO - 10.1186/s40677-017-0075-z
M3 - Article
AN - SCOPUS:85045628627
SN - 2197-8670
VL - 4
JO - Geoenvironmental Disasters
JF - Geoenvironmental Disasters
IS - 1
M1 - 11
ER -