TY - JOUR
T1 - Securing Digital Audio using Complex Quadratic Map
AU - Suryadi, M. T.
AU - Gunawan, Tjandra Satria
AU - Satria, Yudi
N1 - Publisher Copyright:
© 2018 Published under licence by IOP Publishing Ltd.
PY - 2018/3/22
Y1 - 2018/3/22
N2 - In This digital era, exchanging data are common and easy to do, therefore it is vulnerable to be attacked and manipulated from unauthorized parties. One data type that is vulnerable to attack is digital audio. So, we need data securing method that is not vulnerable and fast. One of the methods that match all of those criteria is securing the data using chaos function. Chaos function that is used in this research is complex quadratic map (CQM). There are some parameter value that causing the key stream that is generated by CQM function to pass all 15 NIST test, this means that the key stream that is generated using this CQM is proven to be random. In addition, samples of encrypted digital sound when tested using goodness of fit test are proven to be uniform, so securing digital audio using this method is not vulnerable to frequency analysis attack. The key space is very huge about 8.1×l031 possible keys and the key sensitivity is very small about 10-10, therefore this method is also not vulnerable against brute-force attack. And finally, the processing speed for both encryption and decryption process on average about 450 times faster that its digital audio duration.
AB - In This digital era, exchanging data are common and easy to do, therefore it is vulnerable to be attacked and manipulated from unauthorized parties. One data type that is vulnerable to attack is digital audio. So, we need data securing method that is not vulnerable and fast. One of the methods that match all of those criteria is securing the data using chaos function. Chaos function that is used in this research is complex quadratic map (CQM). There are some parameter value that causing the key stream that is generated by CQM function to pass all 15 NIST test, this means that the key stream that is generated using this CQM is proven to be random. In addition, samples of encrypted digital sound when tested using goodness of fit test are proven to be uniform, so securing digital audio using this method is not vulnerable to frequency analysis attack. The key space is very huge about 8.1×l031 possible keys and the key sensitivity is very small about 10-10, therefore this method is also not vulnerable against brute-force attack. And finally, the processing speed for both encryption and decryption process on average about 450 times faster that its digital audio duration.
UR - http://www.scopus.com/inward/record.url?scp=85045731107&partnerID=8YFLogxK
U2 - 10.1088/1742-6596/974/1/012014
DO - 10.1088/1742-6596/974/1/012014
M3 - Conference article
AN - SCOPUS:85045731107
SN - 1742-6588
VL - 974
JO - Journal of Physics: Conference Series
JF - Journal of Physics: Conference Series
IS - 1
M1 - 012014
T2 - 3rd International Conference on Mathematics: Pure, Applied and Computation, ICoMPAC 2017
Y2 - 1 November 2017 through 1 November 2017
ER -