TY - JOUR
T1 - Second-coordination sphere effects on the reactivities of Hoveyda-Grubbs-type catalysts
T2 - a ligand exchange study using phenolic moiety-functionalized ligands
AU - Jatmika, Catur
AU - Goshima, Kenta
AU - Wakabayashi, Kazumo
AU - Akiyama, Naoki
AU - Hirota, Shun
AU - Matsuo, Takashi
N1 - Publisher Copyright:
© The Royal Society of Chemistry.
PY - 2020/8/25
Y1 - 2020/8/25
N2 - The Hoveyda-Grubbs (HG) second-generation catalyst (HG-II), a Ru complex with a 2-isopropoxybenzylidene ligand, is extensively used for olefin metathesis, the rearrangement of carbon-carbon double bonds. A well-known strategy to control its complex reactivity is to modify the phenyl ring in the ligand, thereby directly influencing the coordination of the phenolic oxygen to the metal center. We, herein, report that a functional group attached to the phenolic moiety in the 2-alkoxybenzylidene ligand can indirectly affect the reactivities of HG-type complexes. In this work, the ligand exchange reactions between HG-II and phenolic moiety-modified 2-alkoxybenzylidene ligands are useful for evaluating the structural effects of the ligands. Specifically, an ethylene amide or an ester group at the terminal phenolic moiety in the benzylidene ligand was found to influence the relative stabilities of HG-type complexes compared to that of the HG-II complex. The structural analyses proved that the observed effects of the functional groups on the complex stabilities originate from the interactions with a chlorido ligand in HG-type complexes without changes in coordination fashions at the metal centers. It was found that the outer-sphere interactions also influence the catalytic activities of HG-type complexes, namely, the properties of HG-type complexes can be controlled by outer-sphere structural factors toward the metal center (i.e., "the second-coordination sphere effect"). In the design of functionalized HG-type complexes, the outer-sphere structural effects need to be considered in addition to the optimization of the metal coordination site.
AB - The Hoveyda-Grubbs (HG) second-generation catalyst (HG-II), a Ru complex with a 2-isopropoxybenzylidene ligand, is extensively used for olefin metathesis, the rearrangement of carbon-carbon double bonds. A well-known strategy to control its complex reactivity is to modify the phenyl ring in the ligand, thereby directly influencing the coordination of the phenolic oxygen to the metal center. We, herein, report that a functional group attached to the phenolic moiety in the 2-alkoxybenzylidene ligand can indirectly affect the reactivities of HG-type complexes. In this work, the ligand exchange reactions between HG-II and phenolic moiety-modified 2-alkoxybenzylidene ligands are useful for evaluating the structural effects of the ligands. Specifically, an ethylene amide or an ester group at the terminal phenolic moiety in the benzylidene ligand was found to influence the relative stabilities of HG-type complexes compared to that of the HG-II complex. The structural analyses proved that the observed effects of the functional groups on the complex stabilities originate from the interactions with a chlorido ligand in HG-type complexes without changes in coordination fashions at the metal centers. It was found that the outer-sphere interactions also influence the catalytic activities of HG-type complexes, namely, the properties of HG-type complexes can be controlled by outer-sphere structural factors toward the metal center (i.e., "the second-coordination sphere effect"). In the design of functionalized HG-type complexes, the outer-sphere structural effects need to be considered in addition to the optimization of the metal coordination site.
UR - http://www.scopus.com/inward/record.url?scp=85090072637&partnerID=8YFLogxK
U2 - 10.1039/d0dt02353a
DO - 10.1039/d0dt02353a
M3 - Article
C2 - 32779687
AN - SCOPUS:85090072637
SN - 1477-9226
VL - 49
SP - 11618
EP - 11627
JO - Dalton transactions (Cambridge, England : 2003)
JF - Dalton transactions (Cambridge, England : 2003)
IS - 33
ER -