Screening and purification of NanB sialidase from Pasteurella multocida with activity in hydrolyzing sialic acid Neu5Acα(2–6)Gal and Neu5Acα(2–3)Gal

Christian Marco Hadi Nugroho, Ryan Septa Kurnia, Simson Tarigan, Otto Sahat Martua Silaen, Silvia Triwidyaningtyas, I. Wayan Teguh Wibawan, Lily Natalia, Andi Khomeini Takdir, Amin Soebandrio

Research output: Contribution to journalArticlepeer-review

Abstract

Study on sialidases as antiviral agents has been widely performed, but many types of sialidase have not been tested for their antiviral activity. Pasteurella multocida NanB sialidase is one such sialidase that has never been isolated for further research. In this study, the activity of NanB sialidase was investigated in silico by docking the NanB sialidase of Pasteurella multocida to the Neu5Acα(2–6)Gal and Neu5Acα(2–3)Gal ligands. Additionally, some local isolates of Pasteurella multocida, which had the NanB gene were screened, and the proteins were isolated for further testing regarding their activity in hydrolyzing Neu5Acα(2–6)Gal and Neu5Acα(2–3)Gal. Silico studies showed that the NanB sialidase possesses an exceptional affinity towards forming a protein–ligand complex with Neu5Acα(2–6)Gal and Neu5Acα(2–3)Gal. NanB sialidase of Pasteurella multocida B018 at 0.129 U/mL and 0.258 U/mL doses can hydrolyze Neu5Acα(2–6)Gal and Neu5Acα(2–3)Gal better than other doses. In addition, those doses can inhibit effectively H9N2 viral binding to red blood cells. This study suggested that the NanB sialidase of Pasteurella multocida B018 has a potent antiviral activity because can hydrolyze sialic acid on red blood cells surface and inhibit the H9N2 viral binding to the cells.

Original languageEnglish
Article number9425
JournalScientific reports
Volume12
Issue number1
DOIs
Publication statusPublished - Dec 2022

Fingerprint

Dive into the research topics of 'Screening and purification of NanB sialidase from Pasteurella multocida with activity in hydrolyzing sialic acid Neu5Acα(2–6)Gal and Neu5Acα(2–3)Gal'. Together they form a unique fingerprint.

Cite this