TY - JOUR
T1 - Reflecting on Mechanical Functionalities in Bioreactors for Tissue Engineering Purposes
AU - Nadhif, M. Hanif
AU - Assyarify, Hanif
AU - Waafi, Affan Kaysa
AU - Whulanza, Yudan
N1 - Funding Information:
This research was supported by the Universitas Indonesia Grant PIT9 in 2019 with Contract Number: NKB-0084/UN2.R3.1/HKP.05.00/2019.
Publisher Copyright:
© 2020. The American Society of Hematology. All Rights Reserved.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/11/20
Y1 - 2020/11/20
N2 - Many articles have reported a correlation between the use of mechanical stimulation and an enhancement in cultivation of various tissues engineered in bioreactors. The enhancement includes improvements in cell growth, proliferation, and functionalities. The aim of this report is to review the mechanical functionalities of tissue engineering bioreactors in terms of the forms of stimulation, types of stress, actuators, supporting modules, and, most importantly, efficacy. The Google Scholar database was searched for relevant articles. Three forms of simulation were reported: uniaxial, biaxial, and multiaxial. The types of stress exerted by bioreactors include compression, tension, shear, and dynamic stresses, which are applied solely or mutually depending on the number of axes involved. Mechanical stimulation could be actuated by stepper motors, pistons, pneumatic pumps, diaphragm pumps, piezoelectric systems, or dielectric charges. Additional modules, such as incubators, flow perfusion systems, ultrasound sensors, movement controls, and electrodes, can also support the mechanical functions of bioreactors. The efficacy of a bioreactor could be determined by investigating the biomechanical and histological properties of the engineered tissues. To facilitate the development of mechanical functionalities for tissue engineering bioreactors in the future, a seven-step framework is proposed.
AB - Many articles have reported a correlation between the use of mechanical stimulation and an enhancement in cultivation of various tissues engineered in bioreactors. The enhancement includes improvements in cell growth, proliferation, and functionalities. The aim of this report is to review the mechanical functionalities of tissue engineering bioreactors in terms of the forms of stimulation, types of stress, actuators, supporting modules, and, most importantly, efficacy. The Google Scholar database was searched for relevant articles. Three forms of simulation were reported: uniaxial, biaxial, and multiaxial. The types of stress exerted by bioreactors include compression, tension, shear, and dynamic stresses, which are applied solely or mutually depending on the number of axes involved. Mechanical stimulation could be actuated by stepper motors, pistons, pneumatic pumps, diaphragm pumps, piezoelectric systems, or dielectric charges. Additional modules, such as incubators, flow perfusion systems, ultrasound sensors, movement controls, and electrodes, can also support the mechanical functions of bioreactors. The efficacy of a bioreactor could be determined by investigating the biomechanical and histological properties of the engineered tissues. To facilitate the development of mechanical functionalities for tissue engineering bioreactors in the future, a seven-step framework is proposed.
KW - Bioreactors
KW - Mechanical functionalities
KW - Tissue engineering
UR - http://www.scopus.com/inward/record.url?scp=85097873457&partnerID=8YFLogxK
U2 - 10.14716/ijtech.v11i5.4314
DO - 10.14716/ijtech.v11i5.4314
M3 - Article
AN - SCOPUS:85097873457
SN - 2086-9614
VL - 11
SP - 1066
EP - 1075
JO - International Journal of Technology
JF - International Journal of Technology
IS - 5
ER -