TY - GEN
T1 - Recent progress and future challenge of high-capacity adsorbent for non-fission molybdenum-99 (99Mo) in application of 99Mo/99mTc generator
AU - Marlina,
AU - Ridwan, M.
AU - Abdullah, I.
AU - Yulizar, Y.
N1 - Funding Information:
This work is supported by Degree by Research Program Scholarship, Indonesian Institute of Science (LIPI) as well as Indonesian government funding through the National Nuclear Energy Agency, BATAN.
Publisher Copyright:
© 2021 Author(s).
PY - 2021/3/29
Y1 - 2021/3/29
N2 - Technetium-99m (99mTc) plays a major role in diagnostic nuclear medicine and has not yet been replaced with any other radionuclides. The 99mTc is a decay product of molybdenum-99 (99Mo) and it is available through a 99Mo/99mTc generator. The 99Mo can be produced either from the fission reaction of uranium-235 or from neutron-irradiated of natural/enriched molybdenum-98. The non-fission 99Mo/99mTc generator has a low specific activity of 99Mo. This limitation, however, can be overcome by the use of high-capacity adsorbents for 99Mo. This review is focused on the current progress and future challenges in the development of high-capacity adsorbent materials for non-fission molybdenum-99 (99Mo) in the application of 99Mo/99mTc generator. We briefly summarized some materials as well as nanomaterials that show high adsorption capacity for non-fission 99Mo. We also highlighted several synthesis methods, including the green synthesis method using plant extracts which can be potentially used to obtain high-capacity adsorbent materials.
AB - Technetium-99m (99mTc) plays a major role in diagnostic nuclear medicine and has not yet been replaced with any other radionuclides. The 99mTc is a decay product of molybdenum-99 (99Mo) and it is available through a 99Mo/99mTc generator. The 99Mo can be produced either from the fission reaction of uranium-235 or from neutron-irradiated of natural/enriched molybdenum-98. The non-fission 99Mo/99mTc generator has a low specific activity of 99Mo. This limitation, however, can be overcome by the use of high-capacity adsorbents for 99Mo. This review is focused on the current progress and future challenges in the development of high-capacity adsorbent materials for non-fission molybdenum-99 (99Mo) in the application of 99Mo/99mTc generator. We briefly summarized some materials as well as nanomaterials that show high adsorption capacity for non-fission 99Mo. We also highlighted several synthesis methods, including the green synthesis method using plant extracts which can be potentially used to obtain high-capacity adsorbent materials.
UR - http://www.scopus.com/inward/record.url?scp=85103723197&partnerID=8YFLogxK
U2 - 10.1063/5.0047834
DO - 10.1063/5.0047834
M3 - Conference contribution
AN - SCOPUS:85103723197
T3 - AIP Conference Proceedings
BT - Proceedings of the International Conference and School on Physics in Medicine and Biosystem, ICSPMB 2020
A2 - Lubis, Lukmanda Evan
A2 - Nuzulia, Nur Aisyah
A2 - Hidayati, Nur Rahmah
PB - American Institute of Physics Inc.
T2 - 2020 International Conference and School on Physics in Medicine and Biosystem: Physics Contribution in Medicine and Biomedical Applications, ICSPMB 2020
Y2 - 6 November 2020 through 8 November 2020
ER -