TY - JOUR
T1 - Pyrolysis of activated carbon from coconut shell and its characteristic in the LiFePO4/V/C composite for lithium ion battery cathode
AU - Sofyan, N.
AU - Rachmawati, A. D.
AU - Zulfia, A.
AU - Subhan, A.
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2018/1/25
Y1 - 2018/1/25
N2 - Most of the time, coconut shells from the coconut farms have not been used but for charcoal purpose. In this work, the charcoal from the coconut shells was converted into an activated carbon and used it for the development of lithium ion battery. The development was begun by firstly synthesizing LiFePO4 (LFP) through a hydrothermal route using stoichiometric amounts of precursors LiOH, NH4H2PO4, and FeSO4.7H2O. The as-synthesized LFP was then mixed with variation of vanadium concentrations and a fix concentration of the carbon pyrolyzed from the coconut shells. X-ray diffraction (XRD) was used to characterize the crystal structure, whereas a scanning electron microscope (SEM) was used to characterize surface morphology of the composite. The characteristic of the composite was further examined an electrochemical impedance spectroscopy (EIS) for the conductivity. The XRD results showed that the LiFePO4/V/C has been formed successfully with an olivine structure. The SEM results depicted an agglomerate morphology but most of LiFePO4/V particles have been coated by the carbon. The EIS results showed conductivity values of 1.3387×10-2 S/cm, 1.184×10-3 S/cm, 1.7241×10-3 S/cm, and 6.6423×10-4 S/cm for the LFP/C-0V, LFP/C-3V, LFP/C-5V, and LFP/C-7V samples, respectively. The performance test indicated that coconut shell has a great potential as a cheap carbon resource for the development of lithium ion battery cathode.
AB - Most of the time, coconut shells from the coconut farms have not been used but for charcoal purpose. In this work, the charcoal from the coconut shells was converted into an activated carbon and used it for the development of lithium ion battery. The development was begun by firstly synthesizing LiFePO4 (LFP) through a hydrothermal route using stoichiometric amounts of precursors LiOH, NH4H2PO4, and FeSO4.7H2O. The as-synthesized LFP was then mixed with variation of vanadium concentrations and a fix concentration of the carbon pyrolyzed from the coconut shells. X-ray diffraction (XRD) was used to characterize the crystal structure, whereas a scanning electron microscope (SEM) was used to characterize surface morphology of the composite. The characteristic of the composite was further examined an electrochemical impedance spectroscopy (EIS) for the conductivity. The XRD results showed that the LiFePO4/V/C has been formed successfully with an olivine structure. The SEM results depicted an agglomerate morphology but most of LiFePO4/V particles have been coated by the carbon. The EIS results showed conductivity values of 1.3387×10-2 S/cm, 1.184×10-3 S/cm, 1.7241×10-3 S/cm, and 6.6423×10-4 S/cm for the LFP/C-0V, LFP/C-3V, LFP/C-5V, and LFP/C-7V samples, respectively. The performance test indicated that coconut shell has a great potential as a cheap carbon resource for the development of lithium ion battery cathode.
UR - http://www.scopus.com/inward/record.url?scp=85041671463&partnerID=8YFLogxK
U2 - 10.1088/1755-1315/105/1/012017
DO - 10.1088/1755-1315/105/1/012017
M3 - Conference article
AN - SCOPUS:85041671463
SN - 1755-1307
VL - 105
JO - IOP Conference Series: Earth and Environmental Science
JF - IOP Conference Series: Earth and Environmental Science
IS - 1
M1 - 012017
T2 - 2nd International Tropical Renewable Energy Conference, i-TREC 2017
Y2 - 3 October 2017 through 4 October 2017
ER -