TY - GEN
T1 - Preparation, physical characterization, and stability of Ferrous-Chitosan microcapsules using different iron sources
AU - Handayani, Noer Abyor
AU - Luthfansyah, M.
AU - Krisanti, Elsa
AU - Kartohardjono, Sutrasno
AU - Mulia, Kamarza
N1 - Publisher Copyright:
© 2017 Author(s).
PY - 2017/11/27
Y1 - 2017/11/27
N2 - Dietary modification, supplementation and food fortification are common strategies to alleviate iron deficiencies. Fortification of food is an effective long-term approach to improve iron status of populations. Fortification by adding iron directly to food will cause sensory problems and decrease its bioavailability. The purpose of iron encapsulation is: (1) to improve iron bioavailability, by preventing oxidation and contact with inhibitors and competitors; and (2) to disguise the rancid aroma and flavor of iron. A microcapsule formulation of two suitable iron compounds (iron II fumarate and iron II gluconate) using chitosan as a biodegradable polymer will be very important. Freeze dryer was also used for completing the iron microencapsulation process. The main objective of the present study was to prepare and characterize the iron-chitosan microcapsules. Physical characterization, i.e. encapsulation efficiency, iron loading capacity, and SEM, were also discussed in this paper. The stability of microencapsulated iron under simulated gastrointestinal conditions was also investigated, as well. Both iron sources were highly encapsulated, ranging from 71.5% to 98.5%. Furthermore, the highest ferrous fumarate and ferrous gluconate loaded were 1.9% and 4.8%, respectively. About 1.04% to 9.17% and 45.17% to 75.19% of Fe II and total Fe, were released in simulated gastric fluid for two hours and in simulated intestinal fluid for six hours, respectively.
AB - Dietary modification, supplementation and food fortification are common strategies to alleviate iron deficiencies. Fortification of food is an effective long-term approach to improve iron status of populations. Fortification by adding iron directly to food will cause sensory problems and decrease its bioavailability. The purpose of iron encapsulation is: (1) to improve iron bioavailability, by preventing oxidation and contact with inhibitors and competitors; and (2) to disguise the rancid aroma and flavor of iron. A microcapsule formulation of two suitable iron compounds (iron II fumarate and iron II gluconate) using chitosan as a biodegradable polymer will be very important. Freeze dryer was also used for completing the iron microencapsulation process. The main objective of the present study was to prepare and characterize the iron-chitosan microcapsules. Physical characterization, i.e. encapsulation efficiency, iron loading capacity, and SEM, were also discussed in this paper. The stability of microencapsulated iron under simulated gastrointestinal conditions was also investigated, as well. Both iron sources were highly encapsulated, ranging from 71.5% to 98.5%. Furthermore, the highest ferrous fumarate and ferrous gluconate loaded were 1.9% and 4.8%, respectively. About 1.04% to 9.17% and 45.17% to 75.19% of Fe II and total Fe, were released in simulated gastric fluid for two hours and in simulated intestinal fluid for six hours, respectively.
UR - http://www.scopus.com/inward/record.url?scp=85038913153&partnerID=8YFLogxK
U2 - 10.1063/1.5011910
DO - 10.1063/1.5011910
M3 - Conference contribution
AN - SCOPUS:85038913153
T3 - AIP Conference Proceedings
BT - Proceedings of the 3rd International Symposium on Applied Chemistry 2017
A2 - Tursiloadi, Silvester
A2 - Rinaldi, Nino
PB - American Institute of Physics Inc.
T2 - 3rd International Symposium on Applied Chemistry 2017, ISAC 2017
Y2 - 23 October 2017 through 24 October 2017
ER -