TY - JOUR
T1 - Preparation and Characterization of ZnO-Fe2O3 Nanocomposite Using Green Synthesis Method and Its Application in Powder Pyrotechnics
AU - Lestariana, Evie
AU - Supriyatno, Heru
AU - Sitompul, Hamonangan Rekso Diputro
AU - Restasari, Afni
AU - Yulizar, Yoki
N1 - Publisher Copyright:
© 2025, Magister Program of Material Sciences, Graduate School of Sriwijaya University. All rights reserved.
PY - 2025/4
Y1 - 2025/4
N2 - Nanocomposites are often used as a catalyst in the pyrolysis of Al/Mg/KNO3 rocket igniter charge. Because the synthesis of the nanocomposites has a negative impact on the environment, in this study, the nanocomposite of ZnO-Fe2O3 was synthesized using a green synthesis method based on the aqueous fraction of Syzygium polyanthum (Wight) Walp. leaf extract. The secondary metabolites contained in the extract were tested. ZnO-Fe2O3 nanocomposite was characterized using Ultra-Violet-Visible Diffuse Reflectance Spectroscopy (UV Vis-DRS), Fourier Transform Infra-Red Spectroscopy (FT-IR), X-ray Diffraction (XRD), Particle Size Analyzer (PSA), Scanning Electron Microscope-Energy Dispersive X-Ray Spectroscopy (SEM-EDS), and Transmission Electron Microscope (TEM). The thermal decomposition process of Al/Mg/KNO3 with and without ZnO-Fe2O3 nanocomposite was analyzed using Differential Thermal Analysis (DTA) and Thermogravimetry Analysis (TGA). As a result, ZnO-Fe2O3 nanocomposite is successfully synthesized, proven by UV-Vis DRS, FT-IR, XRD, and SEM-EDS analysis. It highlights the effectiveness of aqueous leaves extract of Syzygium polyanthum (Wight) Walp. as a capping agent because of the secondary metabolites. Based on PSA and TEM characterization, the particle size is 17.37 nm. The TGA curves demonstrate that the addition of ZnO-Fe2O3 nanocomposite lowers the activation energy for decomposition of Al/Mg/KNO3, from 58.71 kJ/mol to 52.07 kJ/mol, as well as reduces the stage in the decomposition process. A particular reason lies on the role of ZnO-Fe2O3 nanocomposite in reducing the activation energy of the thermal decomposition of KNO3.
AB - Nanocomposites are often used as a catalyst in the pyrolysis of Al/Mg/KNO3 rocket igniter charge. Because the synthesis of the nanocomposites has a negative impact on the environment, in this study, the nanocomposite of ZnO-Fe2O3 was synthesized using a green synthesis method based on the aqueous fraction of Syzygium polyanthum (Wight) Walp. leaf extract. The secondary metabolites contained in the extract were tested. ZnO-Fe2O3 nanocomposite was characterized using Ultra-Violet-Visible Diffuse Reflectance Spectroscopy (UV Vis-DRS), Fourier Transform Infra-Red Spectroscopy (FT-IR), X-ray Diffraction (XRD), Particle Size Analyzer (PSA), Scanning Electron Microscope-Energy Dispersive X-Ray Spectroscopy (SEM-EDS), and Transmission Electron Microscope (TEM). The thermal decomposition process of Al/Mg/KNO3 with and without ZnO-Fe2O3 nanocomposite was analyzed using Differential Thermal Analysis (DTA) and Thermogravimetry Analysis (TGA). As a result, ZnO-Fe2O3 nanocomposite is successfully synthesized, proven by UV-Vis DRS, FT-IR, XRD, and SEM-EDS analysis. It highlights the effectiveness of aqueous leaves extract of Syzygium polyanthum (Wight) Walp. as a capping agent because of the secondary metabolites. Based on PSA and TEM characterization, the particle size is 17.37 nm. The TGA curves demonstrate that the addition of ZnO-Fe2O3 nanocomposite lowers the activation energy for decomposition of Al/Mg/KNO3, from 58.71 kJ/mol to 52.07 kJ/mol, as well as reduces the stage in the decomposition process. A particular reason lies on the role of ZnO-Fe2O3 nanocomposite in reducing the activation energy of the thermal decomposition of KNO3.
KW - Al/Mg/KNO Pyrotechnic Powder
KW - Green Synthesis
KW - Thermal Decomposition
KW - ZnO-FeO Nanocomposite
UR - http://www.scopus.com/inward/record.url?scp=105001940521&partnerID=8YFLogxK
U2 - 10.26554/sti.2025.10.2.493-503
DO - 10.26554/sti.2025.10.2.493-503
M3 - Article
AN - SCOPUS:105001940521
SN - 2580-4405
VL - 10
SP - 493
EP - 503
JO - Science and Technology Indonesia
JF - Science and Technology Indonesia
IS - 2
ER -