TY - GEN
T1 - Preparation and characterization of nanoemulsion herbal drinks using natural deep eutectic solvent and virgin coconut oil
AU - Krisanti, Elsa Anisa
AU - Tobing, Mesakh L.
AU - Mulia, Kamarza
N1 - Publisher Copyright:
© 2024 AIP Publishing LLC.
PY - 2024/2/6
Y1 - 2024/2/6
N2 - Curcumin and mangostin compounds contained in turmeric root and mangosteen rind are widely known as active compounds that have antioxidant activity. These two active compounds are also known to have low solubility in aqueous solutions, so mixing them in nanoemulsions is expected to increase their solubility in body fluids. This study aims to formulate and characterize nanoemulsions containing mangosteen peel extract in natural eutectic solvent (NADES) and turmeric extract in virgin coconut oil (VCO), as a healthy herbal drink. In this study, NADES consisted of 1,2-propanediol, and betaine was applied to increase the solubility of α-mangostin in the aqueous phase, while curcumin from turmeric extract was dissolved in the VCO. The oil-in-water nanoemulsion has variations in the mass ratio of the aqueous phase to the oily phase, and variations in the content of xanthan gum as a thickener about 0.50 g - 0.15 g. Stability test using accelerated centrifugation method and freeze-thaw method showed the nanoemulsion was stable for more than one year. The pH values of various nanoemulsions were constant in the range of 6.4 - 6.8 which is a good criterion for a healthy drink. The emulsion droplet size ranged from 300 nm to 600 nm and the zeta potential value ranged from -19 mV to -44 mV, these results also indicated a stable nanoemulsion. The results of the freeze-thaw test showed that the nanoemulsion could maintain its stability under extreme conditions. The phenolic content and antioxidant activity of the nanoemulsion showed values ranging from 22 to 38 mg Gallic Acid Equivalent (GAE) /100 g sample and 30 - 55 μmol Fe (II)/100 g sample, respectively. From the antioxidant test using 2,2-diphenyl-1-picrylhydrazyl (DPPH), the nanoemulsion had an inhibition percentage close to 80% at a concentration of about 500,000 ppm. The stability of nanoemulsions in simulated gastrointestinal fluids showed that nanoemulsions were stable in them, thus potentially increasing the bioavailability of herbal extracts in gastrointestinal fluids. However, further research on the number of bioactive extracts in nanoemulsions needs to be reviewed by taking into account the safe limits of phenolic compounds from plants that can be consumed daily.
AB - Curcumin and mangostin compounds contained in turmeric root and mangosteen rind are widely known as active compounds that have antioxidant activity. These two active compounds are also known to have low solubility in aqueous solutions, so mixing them in nanoemulsions is expected to increase their solubility in body fluids. This study aims to formulate and characterize nanoemulsions containing mangosteen peel extract in natural eutectic solvent (NADES) and turmeric extract in virgin coconut oil (VCO), as a healthy herbal drink. In this study, NADES consisted of 1,2-propanediol, and betaine was applied to increase the solubility of α-mangostin in the aqueous phase, while curcumin from turmeric extract was dissolved in the VCO. The oil-in-water nanoemulsion has variations in the mass ratio of the aqueous phase to the oily phase, and variations in the content of xanthan gum as a thickener about 0.50 g - 0.15 g. Stability test using accelerated centrifugation method and freeze-thaw method showed the nanoemulsion was stable for more than one year. The pH values of various nanoemulsions were constant in the range of 6.4 - 6.8 which is a good criterion for a healthy drink. The emulsion droplet size ranged from 300 nm to 600 nm and the zeta potential value ranged from -19 mV to -44 mV, these results also indicated a stable nanoemulsion. The results of the freeze-thaw test showed that the nanoemulsion could maintain its stability under extreme conditions. The phenolic content and antioxidant activity of the nanoemulsion showed values ranging from 22 to 38 mg Gallic Acid Equivalent (GAE) /100 g sample and 30 - 55 μmol Fe (II)/100 g sample, respectively. From the antioxidant test using 2,2-diphenyl-1-picrylhydrazyl (DPPH), the nanoemulsion had an inhibition percentage close to 80% at a concentration of about 500,000 ppm. The stability of nanoemulsions in simulated gastrointestinal fluids showed that nanoemulsions were stable in them, thus potentially increasing the bioavailability of herbal extracts in gastrointestinal fluids. However, further research on the number of bioactive extracts in nanoemulsions needs to be reviewed by taking into account the safe limits of phenolic compounds from plants that can be consumed daily.
KW - antioxidant
KW - curcumin
KW - herbal-drinks
KW - mangosteen
KW - nanoemulsion
KW - natural-deep-eutectic-solvent
KW - virgin-coconut-oil
UR - http://www.scopus.com/inward/record.url?scp=85185773757&partnerID=8YFLogxK
U2 - 10.1063/5.0163903
DO - 10.1063/5.0163903
M3 - Conference contribution
AN - SCOPUS:85185773757
T3 - AIP Conference Proceedings
BT - AIP Conference Proceedings
A2 - Kusuma, Andyka
A2 - Fatriansyah, Jaka Fajar
A2 - Dhelika, Radon
A2 - Pratama, Mochamad Adhiraga
A2 - Irwansyah, Ridho
A2 - Maknun, Imam Jauhari
A2 - Putra, Wahyuaji Narottama
A2 - Ardi, Romadhani
A2 - Harwahyu, Ruki
A2 - Harahap, Yulia Nurliani
A2 - Lischer, Kenny
PB - American Institute of Physics Inc.
T2 - 17th International Conference on Quality in Research, QiR 2021 in conjunction with the International Tropical Renewable Energy Conference 2021, I-Trec 2021 and the 2nd AUN-SCUD International Conference, CAIC-SIUD
Y2 - 13 October 2021 through 15 October 2021
ER -