Prediction of the Heat Transfer Coefficient in a Small Channel with the Superposition and Asymptotic Correlations

Yushazaziah Mohd-Yunos, Normah Mohd-Ghazali, Maziah Mohamad, Agus Sunjarianto Pamitran, Jong Taek Oh

Research output: Contribution to journalArticlepeer-review

Abstract

Heat transfer coefficient as an important characteristic in heat exchanger design is determined by the correlation developed from previous experimental work or accumulation of published data. Although discrepancies still exist between the existing correlations and practical data, several researchers claimed theirs as a generalized heat transfer correlation. Through optimization method, this study predicts the heat transfer coefficient of two-phase flow of propane in a small channel at the saturation temperature of 10°C using two categories of correlation - superposition and asymptotic. Both methods consist of the contribution of nucleate boiling and forced convective heat transfer, the mechanisms that contribute to the total two-phase heat transfer coefficient, which become as two objective functions to be maximized. The optimization of experimental parameters of heat flux, mass flux, channel diameter and vapor quality is done by using genetic algorithm within a range of 5-20kW/m2, 100-250kg/m2s, 1.5-3mm and 0.009-0.99, respectively. In the result, the selected correlations under optimized condition agreed on the dominant mechanism at low and high vapor qualities are caused by the nucleate boiling and forced convective heat transfer, respectively. The optimization work served as an alternative approach in identifying optimized parameters from different correlations to achieve high heat transfer coefficient by giving a fast prediction of parameter range, particularly for the investigation of any new refrigerant. In parallel with some experimental works, a quick prediction is possible to reduce time and cost. From the four selected generalized correlations, Bertsch et al. show the closer trend with the reference experimental work until vapor quality of 0.6.

Original languageEnglish
Article number1850001
JournalInternational Journal of Air-Conditioning and Refrigeration
Volume26
Issue number1
DOIs
Publication statusPublished - 1 Mar 2018

Keywords

  • Heat transfer coefficient
  • genetic algorithm
  • propane
  • small channel
  • two-phase flow

Fingerprint Dive into the research topics of 'Prediction of the Heat Transfer Coefficient in a Small Channel with the Superposition and Asymptotic Correlations'. Together they form a unique fingerprint.

Cite this