TY - JOUR
T1 - Possible role of high calcium concentrations in rat neocortical neurons in inducing hyper excitatory behavior during emergence from sevoflurane
T2 - a proposed pathophysiology
AU - Ramlan, Andi Ade Wijaya
AU - Madjid, Amir S.
AU - Hanindito, Elizeus
AU - Mangunatmaja, Irawan
AU - Ibrahim, Nurhadi
N1 - Publisher Copyright:
Copyright © 2024 Copyright: © 2024 Medical Gas Research.
PY - 2024/9/1
Y1 - 2024/9/1
N2 - Sevoflurane has been shown to increase the incidence of emergence delirium in children; however, the mechanism remains unclear. Sevoflurane increases cytoplasmic calcium concentration which in turn may play a role in emergence delirium. This study aimed to investigate the level of intracellular calcium in rats experiencing hyperexcitatory behavior after exposure to sevoflurane, as well as the role of magnesium in preventing this phenomenon. After ethical approval, 2-5-week-old Sprague-Dawley rats (n = 34) were insufflated with sevoflurane in a modified anesthesia chamber. One group received magnesium sulphate intraperitoneally. After termination of sevoflurane exposure, the occurrence of hyperexcitation was observed. Brain tissue samples from the rats were studied for intracellular calcium levels under a two-channel laser scanning confocal microscope and were quantitatively calculated using ratiometric calculation. The presence of inflammation or oxidative stress reaction was assessed using nuclear factor κB and malondialdehyde. The incidence of hyperexcitatory behavior post sevoflurane exposure was 9 in 16 rats in the observation group and none in the magnesium group. Tests for inflammation and oxidative stress were within normal limits in both groups. The rats showing hyperexcitation had a higher level of cytosol calcium concentration compared to the other groups. To conclude, the calcium concentration of neocortical neurons in Sprague-Dawley rats with hyperexcitatory behavior is increased after exposure to sevoflurane. Administration of magnesium sulphate can prevent the occurrence of hyperexcitation in experimental animals.
AB - Sevoflurane has been shown to increase the incidence of emergence delirium in children; however, the mechanism remains unclear. Sevoflurane increases cytoplasmic calcium concentration which in turn may play a role in emergence delirium. This study aimed to investigate the level of intracellular calcium in rats experiencing hyperexcitatory behavior after exposure to sevoflurane, as well as the role of magnesium in preventing this phenomenon. After ethical approval, 2-5-week-old Sprague-Dawley rats (n = 34) were insufflated with sevoflurane in a modified anesthesia chamber. One group received magnesium sulphate intraperitoneally. After termination of sevoflurane exposure, the occurrence of hyperexcitation was observed. Brain tissue samples from the rats were studied for intracellular calcium levels under a two-channel laser scanning confocal microscope and were quantitatively calculated using ratiometric calculation. The presence of inflammation or oxidative stress reaction was assessed using nuclear factor κB and malondialdehyde. The incidence of hyperexcitatory behavior post sevoflurane exposure was 9 in 16 rats in the observation group and none in the magnesium group. Tests for inflammation and oxidative stress were within normal limits in both groups. The rats showing hyperexcitation had a higher level of cytosol calcium concentration compared to the other groups. To conclude, the calcium concentration of neocortical neurons in Sprague-Dawley rats with hyperexcitatory behavior is increased after exposure to sevoflurane. Administration of magnesium sulphate can prevent the occurrence of hyperexcitation in experimental animals.
UR - http://www.scopus.com/inward/record.url?scp=85199936063&partnerID=8YFLogxK
U2 - 10.4103/2045-9912.385942
DO - 10.4103/2045-9912.385942
M3 - Article
C2 - 39073339
AN - SCOPUS:85199936063
SN - 2045-9912
VL - 14
SP - 115
EP - 120
JO - Medical Gas Research
JF - Medical Gas Research
IS - 3
ER -