TY - GEN
T1 - Pore pressure prediction in laminated shaly sand reservoir
T2 - 2nd International Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016
AU - Haris, Abd.
AU - Parlindungan, E.
AU - Riyanto, Agus
N1 - Publisher Copyright:
© 2017 Author(s).
PY - 2017/7/10
Y1 - 2017/7/10
N2 - Pore pressure prediction has been carried out using well log and seismic velocity data to evaluate pore pressure character of the laminated shally sand reservoir in Bintuni Basin, West Papua. The majority of the thin laminated reservoir are below resolving power of logging tool. The main factor of reservoir behavior, which typically exhibits composition mineral of lithic, micaceous and glauconitic, has a strong relationship with conductive mineral. Based on total gas mud logging data, there is some potential gas reservoir. In this study, non-normal high pore pressure was identified in some intervals and designed for cases where compaction disequilibrium is the cause of fluid expansion on the compaction state of the impermeable sediments. We used Eaton's method to estimate pore pressure gradient. We also performed seismic velocity model analysis to estimate the effective stress using empirical Bowers and Terzaghi method, where horizontal and vertical pressure data were distributed using probabilistic neural network method. Our analysis on the pore pressure distribution map, which is combined with the time structure, shows that the correlation of non normal pore pressure is found not only in height structure but also in the low structure, particularly at the southern part of the study area.
AB - Pore pressure prediction has been carried out using well log and seismic velocity data to evaluate pore pressure character of the laminated shally sand reservoir in Bintuni Basin, West Papua. The majority of the thin laminated reservoir are below resolving power of logging tool. The main factor of reservoir behavior, which typically exhibits composition mineral of lithic, micaceous and glauconitic, has a strong relationship with conductive mineral. Based on total gas mud logging data, there is some potential gas reservoir. In this study, non-normal high pore pressure was identified in some intervals and designed for cases where compaction disequilibrium is the cause of fluid expansion on the compaction state of the impermeable sediments. We used Eaton's method to estimate pore pressure gradient. We also performed seismic velocity model analysis to estimate the effective stress using empirical Bowers and Terzaghi method, where horizontal and vertical pressure data were distributed using probabilistic neural network method. Our analysis on the pore pressure distribution map, which is combined with the time structure, shows that the correlation of non normal pore pressure is found not only in height structure but also in the low structure, particularly at the southern part of the study area.
UR - http://www.scopus.com/inward/record.url?scp=85026263470&partnerID=8YFLogxK
U2 - 10.1063/1.4991265
DO - 10.1063/1.4991265
M3 - Conference contribution
AN - SCOPUS:85026263470
T3 - AIP Conference Proceedings
BT - International Symposium on Current Progress in Mathematics and Sciences 2016, ISCPMS 2016
A2 - Sugeng, Kiki Ariyanti
A2 - Triyono, Djoko
A2 - Mart, Terry
PB - American Institute of Physics Inc.
Y2 - 1 November 2016 through 2 November 2016
ER -