TY - JOUR
T1 - Poly(vinyl alcohol)/Carboxymethyl Cellulose/Cellulose nanofibrils nanocomposite as coating for food packaging paper
AU - Nizardo, Noverra Mardhatillah
AU - Sugandi, Noor Athifah Dzahyrah
AU - Handayani, Aniek Sri
N1 - Publisher Copyright:
© 2023 Taylor & Francis.
PY - 2024
Y1 - 2024
N2 - Cellulose nanofibrils (CNF) can be modified to be used as a coating on food paper packaging. Previous research on PVA/CNF composites showed a low viscosity, which impacted their performance on the coating paper process. To overcome this problem, a thickening agent, such as carboxymethyl cellulose (CMC), is needed. In this work, the effect of CMC on PVA/CMC/CNF nanocomposites was investigated by varying the concentrations of CMC with PVA/CMC and CNF ratio of 80:20 and 90:10. The nanocomposites were characterized by their physical and tensile properties which could affect their coating performance. Moreover, the coating process was conducted on paper and the performances of the coated paper were studied. The results showed that the increase in CMC concentration led to an increasing viscosity and good zeta potential, suggesting good dispersion. Moreover, the addition of CMC improved the tensile properties of PVA/CMC/CNF nanocomposites. However, SEM analysis of PVA/CMC-1:CNF (80:20) revealed the occurrence of agglomeration which might influence the performance of the coated paper. Interestingly, PVA/CMC-1:CNF (80:20) had an excellent water resistance, with the lowest Cobb60. Moreover, the addition of CMC 1 wt% increased WVTR, which remained lower than the blank sample. Meanwhile, PVA/CMC-2:CNF (80:20) demonstrated the best performance in the oil absorption and tearing resistance test. In summary, the addition of CMC can effectively improve the physical and tensile properties of the PVA/CMC/CNF, as well as the barrier properties and tear strength of the PVA/CMC/CNF coated paper. The results demonstrate the potency of this material as a coating for food packaging paper.
AB - Cellulose nanofibrils (CNF) can be modified to be used as a coating on food paper packaging. Previous research on PVA/CNF composites showed a low viscosity, which impacted their performance on the coating paper process. To overcome this problem, a thickening agent, such as carboxymethyl cellulose (CMC), is needed. In this work, the effect of CMC on PVA/CMC/CNF nanocomposites was investigated by varying the concentrations of CMC with PVA/CMC and CNF ratio of 80:20 and 90:10. The nanocomposites were characterized by their physical and tensile properties which could affect their coating performance. Moreover, the coating process was conducted on paper and the performances of the coated paper were studied. The results showed that the increase in CMC concentration led to an increasing viscosity and good zeta potential, suggesting good dispersion. Moreover, the addition of CMC improved the tensile properties of PVA/CMC/CNF nanocomposites. However, SEM analysis of PVA/CMC-1:CNF (80:20) revealed the occurrence of agglomeration which might influence the performance of the coated paper. Interestingly, PVA/CMC-1:CNF (80:20) had an excellent water resistance, with the lowest Cobb60. Moreover, the addition of CMC 1 wt% increased WVTR, which remained lower than the blank sample. Meanwhile, PVA/CMC-2:CNF (80:20) demonstrated the best performance in the oil absorption and tearing resistance test. In summary, the addition of CMC can effectively improve the physical and tensile properties of the PVA/CMC/CNF, as well as the barrier properties and tear strength of the PVA/CMC/CNF coated paper. The results demonstrate the potency of this material as a coating for food packaging paper.
KW - Carboxymethyl cellulose
KW - cellulose nanofibrils
KW - nanocomposite
KW - paper coating, barrier properties
UR - http://www.scopus.com/inward/record.url?scp=85179651763&partnerID=8YFLogxK
U2 - 10.1080/25740881.2023.2291435
DO - 10.1080/25740881.2023.2291435
M3 - Article
AN - SCOPUS:85179651763
SN - 2574-0881
VL - 63
SP - 447
EP - 458
JO - Polymer-Plastics Technology and Materials
JF - Polymer-Plastics Technology and Materials
IS - 5
ER -