TY - JOUR
T1 - Performance of vanadium-doped LiFePO4/C used as a cathode for a lithium ion battery
AU - Sofyan, Nofrijon Bin Imam
AU - Putro, Dimas Yunianto
AU - Syahrial,, Anne Zulfia
N1 - Publisher Copyright:
© IJTech 2016.
PY - 2016
Y1 - 2016
N2 - Vanadium-doped LiFePO4/C used as a cathode for a lithium ion battery has been successfully synthesized. In this work, LiFePO4 was synthesized from LiOH, NH4H2PO4, and FeSO4.7H2O at a stoichiometric amount. Vanadium was added in the form of H4NO3V at concentration variations and 3 wt.% carbon black. The characterization includes thermal analysis, X-ray diffraction, electron microscopy, and electrical impedance spectroscopy. The thermal analysis results showed that the LiFePO4 formation temperature is 653.8-700.0°C. The X-ray diffraction results showed an olivine structure with an orthorhombic space group, whereas the electron microscopy results showed that LiFePO4/C has a round shape with an agglomerated microstructure. Electrical impedance test results showed values of 158 Ω and 59 Ω for the as-synthesized LiFePO4/C and the 5 wt.% vanadium-doped LiFePO4/C, respectively. Cyclic performance test results at 1 C showed capacities of 24.0 mAh/g and 31.2 mAh/g for the as-synthesized LiFePO4/C and the 5 wt.% vanadium-doped LiFePO4/C, respectively. Charge and discharge test results showed charge and discharge capacities of 27.6 mAh/g and 40.2 mAh/g for the as-synthesized LiFePO4/C and the 5 wt.% vanadium-doped LiFePO4, respectively. This result is promising in terms of increasing the performance of a lithium ion battery.
AB - Vanadium-doped LiFePO4/C used as a cathode for a lithium ion battery has been successfully synthesized. In this work, LiFePO4 was synthesized from LiOH, NH4H2PO4, and FeSO4.7H2O at a stoichiometric amount. Vanadium was added in the form of H4NO3V at concentration variations and 3 wt.% carbon black. The characterization includes thermal analysis, X-ray diffraction, electron microscopy, and electrical impedance spectroscopy. The thermal analysis results showed that the LiFePO4 formation temperature is 653.8-700.0°C. The X-ray diffraction results showed an olivine structure with an orthorhombic space group, whereas the electron microscopy results showed that LiFePO4/C has a round shape with an agglomerated microstructure. Electrical impedance test results showed values of 158 Ω and 59 Ω for the as-synthesized LiFePO4/C and the 5 wt.% vanadium-doped LiFePO4/C, respectively. Cyclic performance test results at 1 C showed capacities of 24.0 mAh/g and 31.2 mAh/g for the as-synthesized LiFePO4/C and the 5 wt.% vanadium-doped LiFePO4/C, respectively. Charge and discharge test results showed charge and discharge capacities of 27.6 mAh/g and 40.2 mAh/g for the as-synthesized LiFePO4/C and the 5 wt.% vanadium-doped LiFePO4, respectively. This result is promising in terms of increasing the performance of a lithium ion battery.
KW - Doping
KW - Hydrothermal method
KW - LiFePO
KW - LiFeVPO
KW - Lithium ion battery
UR - http://www.scopus.com/inward/record.url?scp=85010332879&partnerID=8YFLogxK
U2 - 10.14716/ijtech.v7i8.6893
DO - 10.14716/ijtech.v7i8.6893
M3 - Article
AN - SCOPUS:85010332879
SN - 2087-2100
VL - 7
SP - 1307
EP - 1315
JO - International Journal of Technology
JF - International Journal of Technology
IS - 8
ER -