Performance Evaluation of Machine Learning Classifiers for Face Recognition

Dodi Sudiana, Mia Rizkinia, Fahri Alamsyah

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

The digital world, especially image processing, has been evolving due to the needs of society and the importance of digital-based system security. One of the rapidly progressing technologies is the face recognition system using artificial intelligence. It recognizes a person's face registered in the database for verification purposes. In this study, we evaluate the face recognition systems based on machine learning classifier algorithms and Principal Component Analysis (PCA) for feature extraction. Seven machine learning algorithms were considered, i.e., Support Vector Machine (SVM), Decision Tree, K-Nearest Neighbour (KNN), Logistic Regression, Naïve Bayes, Multi-Layer Perceptron (MLP), and Convolutional Neural network (CNN). In the CNN scenario, PCA was not used since it has its feature extraction capability. The first six classifiers were set to the most optimal settings. At the same time, CNN used the LeNet-5 architecture trained with a dropout rate of 0.25, 60 epochs, batch size of 20, Adam optimizer, and cross-categorical entropy for the loss function. The input image size was 64×64×1 obtained from the Olivetti faces database. CNN, SVM, and LR achieved the three highest accuracies, i.e., 98.75%, 98.75%, and 97.50%, respectively.

Original languageEnglish
Title of host publication17th International Conference on Quality in Research, QIR 2021
Subtitle of host publicationInternational Symposium on Electrical and Computer Engineering
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages71-75
Number of pages5
ISBN (Electronic)9781665496964
DOIs
Publication statusPublished - 2021
Event17th International Conference on Quality in Research, QIR 2021: International Symposium on Electrical and Computer Engineering - Virtual, Online, Indonesia
Duration: 13 Oct 202115 Oct 2021

Publication series

Name17th International Conference on Quality in Research, QIR 2021: International Symposium on Electrical and Computer Engineering

Conference

Conference17th International Conference on Quality in Research, QIR 2021: International Symposium on Electrical and Computer Engineering
Country/TerritoryIndonesia
CityVirtual, Online
Period13/10/2115/10/21

Keywords

  • Convolutional Neural network (CNN)
  • Face recognition
  • machine learning
  • performance evaluation
  • Principal Component Analysis (PCA)

Fingerprint

Dive into the research topics of 'Performance Evaluation of Machine Learning Classifiers for Face Recognition'. Together they form a unique fingerprint.

Cite this