TY - JOUR
T1 - PENERAPAN SISTEM DATA MINING UNTUK DIAGNOSIS PENYAKIT KANKER PAYUDARA MENGGUNAKAN CLASSIFICATION BASED ON ASSOCIATION ALGORITHM
AU - Herwanto, Herwanto
AU - Arymurthy, Aniati Murni
PY - 2010
Y1 - 2010
N2 - Aplikasi system data mining untuk mengidentifikasi atribut-atribut penting yang berguna membantu pengambilan keputusan dari basis data rumah sakit akan dibahas dalam paper ini. Data-data medis pasien yang beresiko menderita penyakit kanker payudara dimasukkan ke dalam data warehouse. Metodologi model klasifikasi didasarkan pada tiga tahapan, yaitu a) menangani data yang tidak lengkap melalui ekstraksi, b) merubah data yang bernilai kontinyu menjadi data yang bernilai diskrit serta c) rule mining dan klasifikasi. Algoritma yang digunakan untuk proses data mining adalah Classification Based on Predictive Association Rule (CPAR). Pada tahapan diskritisasi, terdapat masalah yang dikenal dengan istilah "sharp boundary". Paper ini mengusulkan proses optimalisasi menggunakan soft discretization, di mana fuzzy logic digunakan untuk mempartisi data. Ada 2.767 pasien yang terpilih, masing-masing diambil 8 atribut: sex, umur dan hasil pemeriksaan laboratorium yaitu Hemoglobin (HB), Lekosit (Leko), Trombosit (Tromb), Hemotokrit (HCT), Red blood cell distribution width (RDW) dan RDW-SD. Tingkat akurasi maksimum untuk positif kanker payudara adalah 67% dan negatif kanker payudara 97%.
AB - Aplikasi system data mining untuk mengidentifikasi atribut-atribut penting yang berguna membantu pengambilan keputusan dari basis data rumah sakit akan dibahas dalam paper ini. Data-data medis pasien yang beresiko menderita penyakit kanker payudara dimasukkan ke dalam data warehouse. Metodologi model klasifikasi didasarkan pada tiga tahapan, yaitu a) menangani data yang tidak lengkap melalui ekstraksi, b) merubah data yang bernilai kontinyu menjadi data yang bernilai diskrit serta c) rule mining dan klasifikasi. Algoritma yang digunakan untuk proses data mining adalah Classification Based on Predictive Association Rule (CPAR). Pada tahapan diskritisasi, terdapat masalah yang dikenal dengan istilah "sharp boundary". Paper ini mengusulkan proses optimalisasi menggunakan soft discretization, di mana fuzzy logic digunakan untuk mempartisi data. Ada 2.767 pasien yang terpilih, masing-masing diambil 8 atribut: sex, umur dan hasil pemeriksaan laboratorium yaitu Hemoglobin (HB), Lekosit (Leko), Trombosit (Tromb), Hemotokrit (HCT), Red blood cell distribution width (RDW) dan RDW-SD. Tingkat akurasi maksimum untuk positif kanker payudara adalah 67% dan negatif kanker payudara 97%.
UR - http://juti.if.its.ac.id/index.php/juti/article/view/312
U2 - 10.12962/j24068535.v8i2
DO - 10.12962/j24068535.v8i2
M3 - Article
SN - 2406-8535
VL - 8
SP - 1
EP - 10
JO - JUTI: Jurnal Ilmiah Teknologi Informasi
JF - JUTI: Jurnal Ilmiah Teknologi Informasi
IS - 2
ER -