Ozone generation process using parallel plates plasma reactor at room temperature

Sheila Nadhifa, Renno Afriansyah, Setijo Bismo

Research output: Contribution to journalConference articlepeer-review

1 Citation (Scopus)


Ozone is one of the most powerful oxidizing equipment, so it is effectively used to kill bacteria, viruses, and fungi. Many industrial processes use ozone because ozone can run without forming a by-product in water. Nevertheless, the utilization of ozone in Indonesia has not been applied maximally, due to the large cost of commercial ozonator equipment and operational life that is relatively short. In addition, many still do not comprehensively comprehend the ozonation process that is relatively very fast in the presence of ozone conditions that can only last a few minutes before parsing back into oxygen. In this study, the DBD (Dielectric Barrier Discharge) plasma reactor model with parallel plates for ozone generation at room temperature was developed. Furthermore, this study is more focused on conducting performance tests and optimizing ozone productivity in parallel spacer corona discharge chambers. This designated ozonator was treated as a plasma reactor to perform various tests with varying feed flow rates, input voltages, and gas feeds (compressed air and medical oxygen). After the productivity of the ozonators were tested with iodometric titration method, the ozonator's productivity in generating ozone and its optimum operating condition were obtained. It can produce up to 0.82 g ozone/h with compressed air feed and 6.45 g ozone/h with medical oxygen feed.

Original languageEnglish
Article number04016
JournalE3S Web of Conferences
Publication statusPublished - 26 Nov 2018
Event3rd International Tropical Renewable Energy Conference "Sustainable Development of Tropical Renewable Energy", i-TREC 2018 - Kuta, Bali, Indonesia
Duration: 6 Sept 20188 Sept 2018


Dive into the research topics of 'Ozone generation process using parallel plates plasma reactor at room temperature'. Together they form a unique fingerprint.

Cite this